科目: 来源: 题型:
【题目】如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了九年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时) | 6 | 7 | 8 | 9 | 10 |
人数 | 5 | 8 | 12 | 15 | 10 |
(1)根据上述表格补全下面的条形统计图;
(2)写出这50名学生读书时间的众数、中位数、平均数;
(3)若该校有1000名学生,求最近一周的读书时间不少于7小时的人数?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,由6个小正方形组成的网格中,阴影部分是涂黑2个小正方形所形成的图案.
(1)如果将一粒米随机地抛在这个网格上,那么米粒落在阴影部分的概率是______.
(2)现将网格内空白的小正方形()中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是______.(写出所有正确结论的序号)
①;
②扇形OBC的面积为π;
③△OCF∽△OEC;
④若点P为线段OA上一动点,则APOP有最大值20.25.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.
(1)如图1,当BM=1时,求PC的长;
(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:=;
(3)如图3,取PC的中点Q,连接MQ,AQ.
①请探究AQ和MQ之间的数量关系,并写出探究过程;
②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知y关于x的二次函数y=x-bx+b+b-5的图象与x轴有两个公共点.
(1)求b的取值范围;
(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6-2m,求m,n的值;
(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.
(1)如图1,当AE=4,BE=2时,求CD的长度;
(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:
(1)补全条形统计图并填空:被调查的总人数是 人,扇形图中D部分所对应的圆心角的度数为 ;
(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?
(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,漏壶是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x(小时)表示漏水时间,y(厘米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如下表:
漏水时间x(小时) | … | 3 | 4 | 5 | 6 | … |
壶底到水面高度y(厘米) | … | 9 | 7 | 5 | 3 | … |
(1)问y与x的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x的取值范围;
(2)求刚开始计时时壶底到水面的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com