相关习题
 0  362204  362212  362218  362222  362228  362230  362234  362240  362242  362248  362254  362258  362260  362264  362270  362272  362278  362282  362284  362288  362290  362294  362296  362298  362299  362300  362302  362303  362304  362306  362308  362312  362314  362318  362320  362324  362330  362332  362338  362342  362344  362348  362354  362360  362362  362368  362372  362374  362380  362384  362390  362398  366461 

科目: 来源: 题型:

【题目】为进一步推动各级各类学校新型冠状病毒肺炎疫情防控工作,向广大教职工和学生普及新型冠状病毒肺炎疫情防控知识,做好师生返校前的卫生安全防护教育,上好开学第一课,省教育厅要求各级各类学校认真学习相关资料.某中学为了解学生的学习成果,对学生进行了新型冠状病毒肺炎防控知识测试,德育处随机从七、八两个年级各抽取20名学生的答卷成绩(单位:分)进行统计分析,过程如下:

收集数据

八年级:

85

80

95

100

90

95

85

65

75

85

90

90

70

90

100

80

80

90

95

75

七年级:

80

60

80

95

65

100

90

85

85

80

95

75

80

90

70

80

95

75

100

90

整理数据

成绩(分)

八年级

2

5

七年级

3

7

5

5

分析数据

统计量

平均数

中位数

众数

八年级

8575

875

七年级

835

80

应用数据

1)填空:________________________________________

2)看完统计数据,你认为对新型冠状病毒肺炎防护知识掌握更好的年级是__________

3)若八年级共有500人参与答卷,请估计八年级成绩大于90分的人数;

4)在这次测试中,八年级学生甲与七年级学生乙的成绩都是85分,请判断两人在各自年级的排名谁更靠前,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在矩形纸片中,,沿着过该矩形顶点的一条直线将折叠,当的对应点恰好落在矩形的边上时,折痕的长为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,点AC边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间变化的函数关系如图2所示,则边的长为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是O的直径,点C为O上一点,AE和过点C的切线互相垂直,垂足为E,AE交O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.

(1)求证:AC平分BAD;

(2)探究线段PB,AB之间的数量关系,并说明理由;

(3)若AD=3,求ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A(4)B(3m)是直线AB与反比例函数x0)图象的两个交点.ACx轴,垂足为点C,已知D(01),连接ADBDBC

1)求直线AB的表达式;

2ABCABD的面积分别为S1S2,求S2S1

查看答案和解析>>

科目: 来源: 题型:

【题目】若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i1.改造后的斜坡式动扶梯的坡角ACB15°,请你计算改造后的斜坡式自动扶梯AC的长度.

(结果精确到0.1m.参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27)

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.

(1)求抛物线的解析式和顶点C的坐标;

(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;

(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示.

(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本)

(2)分别求出y1y2x之间的函数关系式;

(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.

查看答案和解析>>

同步练习册答案