科目: 来源: 题型:
【题目】武汉某超市在疫情前用3000元购进某种干果销售,发生疫情后,为了保障附近居民的生活需求,又调拨9000元购进该种干果.受疫情影响,交通等成本上涨,第二次的进价比第一次进价提高了20%,但是第二次购进干果的数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果售出后,最后的600千克按原售价的7折售完.售卖结束后,超市决定将盈利的资金捐助给武汉市用于抗击新冠肺炎疫情.那么该超市可以捐助___________元.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,则下列关于m,n的关系正确的是( )
A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n
查看答案和解析>>
科目: 来源: 题型:
【题目】如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.
(1)如图①,在中,,,,为上一点,,为中点,连接,求证:四边形为理想四边形;
(2)如图②,是等边三角形,若为理想对角线,四边形为理想四边形.请画图找出符合条件的C点落在怎样的图形上;(在图中标出必要的数据)
(3)在(2)的条件下,
①若为直角三角形,,求的长度;
②如图③,若,,,请直接写出、、之间的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线顶点坐标为,且与轴交于原点和点.对称轴与轴交点为.
(1)求抛物线的解析式;
(2)若点在抛物线上,且横坐标为,在抛物线对称轴上找一点,使得与的差最大,求此时点的坐标;
(3)若点在抛物线的对称轴上,且纵坐标为.探究:在抛物线上是否存在点使得四点共圆?若存在求出点坐标;若不存在请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:
对于两个正数a、b,则(当且仅当a=b时取等号).
当为定值时,有最小值;当为定值时,有最大值.
例如:已知,若,求的最小值.
解:由≥,得≥,当且仅当即时,有最小值,最小值为.
根据上面的阅读材料回答下列问题:
(1)已知,若,则当 时,有最小值,最小值为 ;
(2)已知,若,则取何值时,有最小值,最小值是多少?
(3)用长为篱笆围一个长方形花园,问这个长方形花园的长、宽各为多少时,所围的长方形花园面积最大,最大面积是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】年月日下午,由名队员组成的扬州市第七批支援湖北医疗队,肩负着国家的重托和神圣职责使命启程出征,其中小李、小王和三个同事共五人直接派往一线某医院,根据该院人事安排需要先抽出一人去重症监护,再派两人到发热门诊,请你利用所学知识完成下列问题.
(1)小李被派往重症监护的概率是 ;
(2)若正好抽出她们的一同事去往重症监护,请你利用画树状图或列表的方法,求出小李和小王同时被派往发热门诊的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随杋抽取了名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
学生最喜爱的节目人数统计表
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | |
中国诗词大会 | 40% | |
出彩中国人 | 10 | 20% |
根据以上信息,回答下列问题:
(1) , ;
(2)补全上面的条形统计图;
(3)若该校共有学生名,估计该校学生最喜爱《朗读者》节目的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系中,点的坐标为,是第一象限内任意一点,连接 、,若,,则就叫做点的“双角坐标”.例如:点的“双角坐标”为.若点到轴的距离为,则的最小值为___.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线与轴交于A,B两点,与轴交于点C,连接BC.
(1)如图1,求直线BC的表达式;
(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;
(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com