科目: 来源: 题型:
【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在菱形ABCD中,AB=5,tan∠ABC=,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t=___秒时,DF的长度有最小值,最小值等于___;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
(4)在点E的运动过程中,是否存在到直线AD的距离为1的点F,若存在直接写出 t的值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC下方抛物线上一动点;
①连接CD,是否存在点D,使得AC平分∠OCD?若存在,求点D的横坐标;若不存在,请说明理由.
②在①的条件下,若P为抛物线上位于AC下方的一个动点,以P、C、A、D为顶点的四边形面积记作S,则S取何值或在什么范围时,相应的点P有且只有2个?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D是AB的中点,AC<BC.
(1)试用无刻度的直尺和圆规,在BC上作一点E,使得直线ED平分ABC的周长;(不要求写作法,但要保留作图痕迹).
(2)在(1)的条件下,若DE分Rt△ABC面积为1﹕2两部分,请探究AC与BC的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020春开学为防控冠状病毒,学生进校园必须戴口罩,测体温,江阴初级中学开通了三条人工测体温的通道,每周一分别由王老师、张老师、李老师三位老师给进校园的学生测体温(每个通道一位老师),周一有小卫和小孙两学生进校园,在3个人工测体温通道中,可随机选择其中的一个通过.
(1) 求小孙进校园时,由王老师测体温的概率;
(2)求两学生进校园时,都是王老师测体温的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】目前,我国的空气质量得到了大幅度的提高.现随机调查了某城市1个月的空气质量情况,并将监测的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)本次调查中,一共调查的天数为_______天;扇形图中,表示“轻度污染”的扇形的圆心角为______度;
(2)将条形图补充完整;
(3)估计该城市一年(以365天计算)中,空气质量未达到优的天数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,半径为3的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=45°恒成立,设△ABC的重心为G,则DG的最小值是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com