科目: 来源: 题型:
【题目】如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,求篮板下沿E点与地面的距离.(结果精确到0.1m,参考数据:sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学疫情期间为了切实抓好“停课不停学”活动,借助某软件平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图.
请你根据以上信息回答下列问题
(1)本次调查的人数为 , 学习时间为7小时的所对的圆心角为 ;
(2)补全频数分布直方图;
(3)若全校共有学生1800人,估计有多少学生在线学习时间不低于8个小时.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于、,连接,已知.
(1)求证:为⊙的切线;
(2)已知,填空:
①当__________时,四边形是菱形;
②若,当__________时,为等腰直角三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,点P为△ABC边上一动点,沿着A→C→B的路径行进,点P作PD⊥AB,垂足为D,设AD=x,△APD的面积为y,图2是y关于x的函数图象,则依据图中的数量关系计算△ACB的周长为( )
A.B.15C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步骤作图:①以C为圆心,以适当长为半径做弧,交CB、CD于M、N两点;②分别以M、N为圆心,以大于MN的长为半径作弧,两弧相交于点E,作射线CE交BD于点O,交AD边于点F;则BO的长度为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知,,,斜边,将绕点顺时针旋转,得到,连接.点从点出发,沿方向匀速行动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停让运动.连接,,交于点.设运动时间为,解答下列问题:
(1)当为何值时,平分?
(2)设四边形的面积为,求与的函教关系式;
(3)在运动过程中,当时,求四边形的面积;
(4)在运动过程中,是否存在某一时刻,使点为线段的中点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(模型介绍)
古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,,,∵直线是点,的对称轴,点,在上,
(1)∴__________,_________,∴____________.在中,∵,∴,即最小.
(归纳总结)
在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点为与的交点,即,,三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.
(模型应用)
(2)如图④,正方形的边长为4,为的中点,是上一动点.求的最小值.
解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点与关于直线对称,连结交于点,则的最小值就是线段的长度,则的最小值是__________.
(3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_________.
(4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,,,则的最小值为____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数(间)与每间标准房的价格(元)的数据如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(间) | … | 65 | 60 | 55 | 50 | … |
(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)求关于的函数表达式、并写出自变量的取值范围.
(3)设客房的日营业额为(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时.客房的日营业额最大?最大为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)
(1)每本宣传册A、B两种彩页各有多少张?
(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com