科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=(x>0)上运动,此时顶点B也在反比例函数y=上运动,则m的值为( )
A.-9B.-12C.-15D.-18
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知双曲线y=和直线y=-x+2,P是双曲线第一象限上一动点,过P作y轴的平行线,交直线y=-x+2于Q点,O为坐标原点.
(1)求直线y=-x+2与坐标轴围成三角形的周长;
(2)设△PQO的面积为S,求S的最小值.
(3)设定点R(2,2),以点P为圆心,PR为半径画⊙P,设⊙P与直线y=-x+2交于M、N两点.
①判断点Q与⊙P的位置关系,并说明理由;
②求S△MON=S△PMN时的P点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=x2﹣2(k﹣1)x+2.
(1)当k=3时,求函数图象与x轴的交点坐标;
(2)函数图象的对称轴与原点的距离为2,当﹣1≤x≤5时,求此时函数的最小值;
(3)函数图象交y轴于点B,交直线x=4于点C,设二次函数图象上的一点P(x,y)满足0≤x≤4时,y≤2,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB=16cm,AC=12cm,动点P、Q分别以每秒2cm和1cm的速度同时开始运动,其中点P从点A出发,沿AC边一直移到点C为止,点Q从点B出发沿BA边一直移到点A为止,(点P到达点C后,点Q继续运动)
(1)请直接用含t的代数式表示AP的长和AQ的长,并写出定义域.
(2)当t等于何值时,△APQ与△ABC相似?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:二次函数y=x2+2x+3与一次函数y=3x+5.
(1)两个函数图象相交吗?若相交,有几个交点?
(2)将直线y=3x+5向下平移k个单位,使直线与抛物线只有一个交点,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是甲、乙两校男、女生人数的统计图.
根据统计图回答问题:
(1)若甲校男生人数为273人,求该校女生人数;
(2)方方同学说:“因为甲校女生人数占全校人数的40%,而乙校女生人数占全校人数的45%,所以甲校的女生人数比乙校女生人数少”,你认为方方同学说的对吗?为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线y=x与双曲线y=(k≠0)的一个交点为P(,n).将直线向上平移b(0>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线的一个交点为Q.若AQ=3AB,则b=____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知矩形ABCD,E,F分别是边AB,CD的中点,M,N分别是边AD,AB上两点,将△AMN沿MN对折,使点A落在点E上.若AB=a,BC=b,且N是FB的中点,则的值为____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=-x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.
①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;
②若点M(-2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=-(x+1)2+m;
④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.
其中正确判断有( )
A.①②③④B.②③④C.①③④D.①③
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以△ABC的一边AB为直径作⊙O,交于BC的中点D,过点D作直线EF与⊙O相切,交AC于点E,交AB的延长线于点F.若△ABC的面积为△CDE的面积的8倍,则下列结论中,错误的是( )
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com