相关习题
 0  362312  362320  362326  362330  362336  362338  362342  362348  362350  362356  362362  362366  362368  362372  362378  362380  362386  362390  362392  362396  362398  362402  362404  362406  362407  362408  362410  362411  362412  362414  362416  362420  362422  362426  362428  362432  362438  362440  362446  362450  362452  362456  362462  362468  362470  362476  362480  362482  362488  362492  362498  362506  366461 

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点DAB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DEBC的延长线于点F

1)求证:BDBF

2)填空:

①若⊙O的半径为5tanB,则CF   

②若⊙OBF相交于点H,当∠B的度数为   时,四边形OBHE为菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:

类别

重视

一般

不重视

人数

a

15

b

1)求表格中ab的值;

2)请补全统计图;

3)若某校共有初中生2000名,请估计该校重视课外阅读名著的初中生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD,边长为8EAB边上的一点,连接DE,将△DAE沿DE所在直线折叠,使点A的对应点A1落在正方形的边CDBC的垂直平分线上,则AE的长度是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标为A10),等腰直角三角形ABC的边ABx轴的正半轴上,∠ABC90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么点C的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的布袋中装有标着数字23454个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为(  )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,对于点,给出如下定义:

如果,那么称点为点的“伴随点”.

例如:点的“伴随点”为点;点的“伴随点”为点

1)直接写出点的“伴随点”的坐标.

2)点在函数的图象上,若其“伴随点”的纵坐标为2,求函数的解析式.

3)点在函数的图象上,且点关于轴对称,点的“伴随点”为.若点在第一象限,且,求此时“伴随点”的横坐标.

4)点在函数的图象上,若其“伴随点”的纵坐标的最大值为,直接写出实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】中,,点D在边AB上,且,动点P从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形,设点P运动的时间为秒,正方形重叠部分的面积为

1)用含有的代数式表示线段的长.

2)当点落在的边上时,求的值.

3)求的函数关系式.

4)当点P在线段AD上运动时,做点N关于CD的对称点,当的某一个顶点的连线平分的面积时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.

线段垂直平分线

我们已知知道线段是轴对称图形,线段的垂直一部分线是线段的对称轴,如图直线是线段的垂直平分线,上任一点,连结,将线段与直线对称,我们发现完全重合,由此都有:线段垂直平分线的性质定理,线段垂直平分线上的点到线段的距离相等.

已知:如图,,垂足为点,点是直线上的任意一点.

求证:.

图中的两个直角三角形,只要证明这两个三角形全等,便可证明(请写出完整的证明过程)

请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程,定理应用.

(1)如图②,在中,直线分别是边的垂直平分线.

求证:直线交于点.

(2)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点,若,则的长为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),yx之间的函数图象如图所示.

(1)无人机上升的速度为   /分,无人机在40米的高度上飞行了   分.

(2)求无人机下落过程中,yx之间的函数关系式.

(3)求无人机距地面的高度为50米时x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面数据,得到条形统计图:

样本数据的平均数、众数、中位数如下表所示:

统计量

平均数

众数

中位数

数值

23

m

21

根据以上信息,解答下列问题:

(1)上表中众数m的值为   

(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填平均数”、“众数中位数”)

(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.

查看答案和解析>>

同步练习册答案