相关习题
 0  362319  362327  362333  362337  362343  362345  362349  362355  362357  362363  362369  362373  362375  362379  362385  362387  362393  362397  362399  362403  362405  362409  362411  362413  362414  362415  362417  362418  362419  362421  362423  362427  362429  362433  362435  362439  362445  362447  362453  362457  362459  362463  362469  362475  362477  362483  362487  362489  362495  362499  362505  362513  366461 

科目: 来源: 题型:

【题目】如图,将四边形ABCD放在每个小正方形的边长为1的网格中,点A.B、C、D均落在格点上.

(Ⅰ)计算AD2+DC2+CB2的值等于_____

(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AD2+DC2+CB2,并简要说明画图方法(不要求证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①abc<0;②4ac<b2;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④3a+c>0;⑤当y≥0时,x的取值范围是﹣1≤x≤3.其中结论正确的个数是(  )

A. 1个B. 2个C. 3D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将绕点按逆时针方向旋转后得到,若,且,则两点之间的距离为(

A.B.

C.2D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,点 的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点轴的平行线分别交轴和直线于点.设点的横坐标为,线段的长度为

⑴求这条抛物线对应的函数表达式;

⑵当点在第一象限的抛物线上时,求之间的函数关系式;

⑶在⑵的条件下,当时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图⑴,在△ABC中,∠C=90°AC=8cmBC=6cm M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s .连接MN,设运动时间为t(s)0t4﹚,解答下列问题:

⑴设△AMN的面积为S,求St之间的函数关系式,并求出S的最大值;

⑵如图⑵,连接MC,将△MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;

⑶当t的值为 ,△AMN是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点AC重合),分别过点AC向直线BM作垂线,垂足分别为点EF,点OAC的中点.

⑴如图1,当点M与点O重合时,OEOF的数量关系是

⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°

①如图2,当点M在线段AC上时,猜想线段CFAEOE之间有怎样的数量关系?请你写出来并加以证明;

②如图3,当点M在线段AC的延长线上时,请直接写出线段CFAEOE之间的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.

a b

⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?

⑶由图象可知,销售单价x 时,该种商品每天的销售利润不低于16元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长ADE,且有∠EBD=CAB

⑴求证:BE是⊙O的切线;

⑵若BC=AC=5,求圆的直径AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知反比例函数y.

(1)若该反比例函数的图象与直线ykx+4(k≠0)只有一个公共点,求k的值;

(2)如图,反比例函数y (1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为

1)求袋子中白球的个数;(请通过列式或列方程解答)

2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)

查看答案和解析>>

同步练习册答案