科目: 来源: 题型:
【题目】如图,直线AB:y=kx+b与x轴.y轴分别相交于点A(1,0)和点B(0,2),以线段AB为边在第一象限作正方形ABCD.
(1)求直线AB的解析式;
(2)求点D的坐标;
(3)若双曲线(k>0)与正方形的边CD绐终有一个交点,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:对于平面直角坐标系中的线段和点,在中,当边上的高为2时,称为的“等高点”,称此时为的“等高距离”.
(1)若点的坐标为(1,2),点的坐标为(4,2),则在点 (1,0),(,4), (0,3)中,的“等高点”是点___;
(2)若(0,0),=2,当的“等高点”在轴正半轴上且“等高距离”最小时,点的坐标是__.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数的图象过点,对称轴为直线.有以下结论:
①;
②;
③若(,),(,)是抛物线上的两点,当时,;
④点,是抛物线与轴的两个交点,若在轴下方的抛物线上存在一点,使得⊥,则的取值范围为;
⑤若方程的两根为,,且<,则﹣2≤<<4.
其中正确结论的序号是( )
A.①②④B.①③④
C.①③⑤D.①②③⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】我校为了了解图书漂流的开展情况,随机抽取部分学生进行了问卷调查,选项:阅读漂流图书本及以上;选项:阅读漂流图书本;选项:阅读漂流图书本;选项:没有阅读漂流图书,只能从中选择一个选项进行回答.收集整理问卷调查的情况,把结果绘制成如下不完整的统计图:
(1)此次抽样调查了_______名学生;
(2)补全条形统计图;
(3)扇形统计图选项圆心角的度数是_______;
(4)该校有名学生,估计全校阅读过漂流图书的学生约有多少名?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在平面直角坐标系中,点、,将沿轴翻折得到,已知抛物线过点、,与轴交于点.
(1)抛物线顶点的坐标为_______;
(2)如图2,沿轴向右以每秒个单位长度的速度平移得到,运动时间为秒.当时,求与重叠面积与的函数关系式;
(3)如图3,将绕点顺时针旋转得到,线段与抛物线对称轴交于点.在旋转一圈过程中,是否存在点,使得?若存在,直接写出所有满足条件的点的坐标;若不存在,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,点是的内部一点,连接、和,如果、和中有两个角相等,则称是的“等心”.特别地,若这三个角都相等,则称是的“恒等心”.
(1)在等边中,点是恒等心,,则点到的距离是_______;
(2)如图2,在中,,点是的外接圆外一点,连接,交于点,试判断是不是的“等心”,并说明理由;
(3)如图3,分别以锐角的边、为边向外做等边和等边,和相交于点,求证:点是的“恒等心”.
查看答案和解析>>
科目: 来源: 题型:
【题目】某书店以元的价格购进一批科普书进行销售,物价局根据市场行情规定,销售单价不低于元且不高于元.在销售中发现,该科普书的每天销售数量(本)与销售单价(元)之间存在某种函数关系,对应如下:
销售单价(元) | |||||
销售数量(本) |
(1)用你所学过的函数知识,求出与之间的函数关系式;
(2)请问该科普书每天利润(元)的最大值是多少?
(3)如果该科普书每天利润必须不少于元,试求出每天销售数量最少为多少本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com