相关习题
 0  362500  362508  362514  362518  362524  362526  362530  362536  362538  362544  362550  362554  362556  362560  362566  362568  362574  362578  362580  362584  362586  362590  362592  362594  362595  362596  362598  362599  362600  362602  362604  362608  362610  362614  362616  362620  362626  362628  362634  362638  362640  362644  362650  362656  362658  362664  362668  362670  362676  362680  362686  362694  366461 

科目: 来源: 题型:

【题目】如图,已知抛物线轴于两点,交轴正半轴于,且

1)求两点的坐标;

2是第二象限抛物线上一点,坐标为,连接,求的面积;

3)在(2)的条件下,是第一象限抛物线上一点,连接轴于,连接并延长交抛物线与点,连接轴于,将点绕点逆时针旋转90°得到点连接,若轴,求Q点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】一前夕,某幼儿园园长到厂家选购AB两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.

AB两种品牌服装每套进价分别为多少元?

该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?

查看答案和解析>>

科目: 来源: 题型:

【题目】在平行四边形ABCD中,点EAD边上,连接BECEEB平分∠AEC .

(1)如图1,判断△BCE的形状,并说明理由;

(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:

(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;

(2)将条形统计图补充完整;

(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?

查看答案和解析>>

科目: 来源: 题型:

【题目】1、图2分别是的网格,网格中每个小正方形的边长均为1两点在小正方形的顶点上,请在图1、图2中各取一点(点必须在小正方形的顶点上),使以为顶点的三角形分别满足以下要求:

1)在图1中画一个,使是以为斜边的直角三角形,且

2)在图2中画一个,使为等腰三角形,且,直接写出的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,在中,上一点,连接,则线段的长为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两人都从出发经地去地,乙比甲晚出发1分钟,两人同时到达地,甲在地停留1分钟,乙在地停留2分钟,他们行走的路程(米)与甲行走的时间(分钟)之间的函数关系如图所示,则下列说法中正确的个数有(

①甲到地前的速度为

②乙从地出发后的速度为

两地间的路程为

④甲乙在行驶途中再次相遇时距离

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线ACBD交于点OBD6cmAD8cmAB10cm,点E从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点G从点C出发,沿CB方向匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动.连接OE,过点GGFBD,设运动时间为ts)(0t4),解答下列问题:

1)当t为何值时,△BOE是等腰三角形?

2)设五边形OEBGF面积为S,试确定St的函数关系式;

3)在运动过程中,是否存在某一时刻t,使S五边形OEBGFSACD1940?若存在,求出t的值;若不存在,请说明理由;

4)在运动过程中,是否存在某一时刻t,使得OB平分∠COE,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.

将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为将军饮马的问题便流传至今.大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.

如图2,作B关于直线l的对称点B′,连结AB′与直线l交于点C,点C就是所求的位置.

证明:如图3,在直线l上另取任一点C′,连结AC′BC′B′C′

∵直线l是点BB′的对称轴,点CC′l上,

CB=CB′C′B=C′B′

AC+CB=AC+   =   

在△AC′B′中,

AB′AC′+C′B′

AC+CBAC′+C′B′AC+CB最小.

本问题实际上是利用轴对称变换的思想,把AB在直线同侧的问题转化为在直线的两侧,从而可利用两点之间线段最短,即三角形两边之和大于第三边的问题加以解决(其中CAB′l的交点上,即ACB′三点共线).本问题可归纳为求定直线上一动点与直线外两定点的距离和的最小值的问题的数学模型.

1.简单应用

1)如图4,在等边△ABC中,AB=6ADBCEAC的中点,MAD上的一点,求EM+MC的最小值

借助上面的模型,由等边三角形的轴对称性可知,BC关于直线AD对称,连结BMEM+MC的最小值就是线段   的长度,则EM+MC的最小值是   

2)如图5,在四边形ABCD中,∠BAD=130°,∠B=D=90°,在BCCD上分别找一点MN当△AMN周长最小时,∠AMN+ANM=   °

2.拓展应用

如图6,是一个港湾,港湾两岸有AB两个码头,∠AOB=30°OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OBC处装货,再停靠OAD处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市购进某种水果的成本为20/kg,经过市场调研发现,这种水果在未来40天的销售单价p(元/kg)与时间 t(天)之间的函数表达式为pt+30;(1≤t≤40t为整数),试销售当天(正式销售前一天)售出400kg,之后每天销售量比前一天减少5千克;

1)试求每天销售利润W1(元)与时间t(天)之间的函数关系式;

2)在销售前20天里,何时利润为4320元?

3)为回馈新老顾客的支持,在实际销售中,超市决定每销售1kg水果就捐赠2元利润给精准扶贫对象.在日销售量不低于300kg的情况下,何时超市获利最多?

查看答案和解析>>

同步练习册答案