相关习题
 0  362559  362567  362573  362577  362583  362585  362589  362595  362597  362603  362609  362613  362615  362619  362625  362627  362633  362637  362639  362643  362645  362649  362651  362653  362654  362655  362657  362658  362659  362661  362663  362667  362669  362673  362675  362679  362685  362687  362693  362697  362699  362703  362709  362715  362717  362723  362727  362729  362735  362739  362745  362753  366461 

科目: 来源: 题型:

【题目】如图,已知正方形的边长为2是边上的动点,CDF,垂足为G,连接,下列说法:①;;③点G运动的路径长为;④CG的最小值为;其中正确的是____________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图直线都与直线l垂直垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l且点C位于点M将正方形ABCD沿l向右平移直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间部分的长度和为y,y关于x的函数图象大致为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若mnmn)是关于x的方程1﹣x﹣a)(x﹣b=0的两根,且ab,则abmn的大小关系是( ).

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,PQ是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OFON交于点B、点C,连接ABPB

1)如图1,当PQ两点都在射线ON上时,请直接写出线段ABPB的数量关系;

2)如图2,当PQ两点都在射线ON的反向延长线上时,线段ABPB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

3)如图3MON=60°,连接AP,设=k,当PQ两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明AOB≌△PQB即可解决问题;

2)存在.证明方法类似(1);

3)连接BQ.只要证明ABP∽△OBQ,即可推出=,由AOB=30°,推出当BAOM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:解:(1)连接:AB=PB.理由:如图1中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MON∴∠AOB=∠BQOOA=PQ∴△AOB≌△PQBAB=PB

2)存在,理由:如图2中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MONBOQ=∠FON∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOBOA=PQ∴△AOB≌△PQBAB=PB

3)连接BQ

易证ABO≌△PBQ∴∠OAB=BPQAB=PB∵∠OPB+BPQ=180°∴∠OAB+OPB=180°AOP+ABP=180°∵∠MON=60°∴∠ABP=120°BA=BP∴∠BAP=BPA=30°BO=BQ∴∠BOQ=BQO=30°∴△ABP∽△OBQ =∵∠AOB=30°BAOM时, 的值最小,最小值为0.5k=0.5

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

型】解答
束】
28

【题目】如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PHy轴,垂足为H,连接AC.

求证:ACD是直角三角形;

试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,2,ABC是等边三角形,DE分别是ABBC边上的两个动点(与点ABC不重合),始终保持BD=CE.

(1)当点DE运动到如图1所示的位置时,求证:CD=AE.

(2)把图1中的ACE绕着A点顺时针旋转60°ABF的位置(如图2),分别连结DFEF.

①找出图中所有的等边三角形(ABC除外),并对其中一个给予证明;

②试判断四边形CDFE的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°.(参考数据:sin50°≈0.77cos50°≈0.64tan50°≈1.20

1)直接写出∠ACB的大小;

2)求这座山的高度CD

查看答案和解析>>

科目: 来源: 题型:

【题目】据报载,在百万家庭低碳行,垃圾分类要先行活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).

1)图2中所缺少的百分数是_________

2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);

3)这次随机调查中,年龄段是“25岁以下的公民中不赞成的有5名,它占“25岁以下人数的百分数是________

4)如果把所持态度中的很赞同赞同统称为支持,那么这次被调查公民中支持的人有_______名.

查看答案和解析>>

科目: 来源: 题型:

【题目】列方程或方程组解应用题:

北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,20081011日到2009228日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O的半径为6cm,B⊙O外一点,OB⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为______时,BP⊙O相切.

查看答案和解析>>

同步练习册答案