科目: 来源: 题型:
【题目】解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:
魔术师能立刻说出观众想的那个数.
(1)如果小玲想的数是,请你通过计算帮助她告诉魔术师的结果;
(2)如果小明想了一个数计算后,告诉魔术师结果为85,那么魔术师立刻说出小明想的那个数是:__________;
(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是
A.b2>4acB.ac>0C.a–b+c>0D.4a+2b+c<0
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.
如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.
如图2,已知M(4,1),N(﹣2,3),点P(m,n).
(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为 ,面积为 ;
②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;
(2)若点P在直线y=﹣2x+4上.
①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;
②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;
(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,扇形OAB的半径为4,∠AOB=90°,P是半径OB上一动点,Q是上一动点.
(1)连接AQ、BQ、PQ,则∠AQB的度数为 ;
(2)当P是OB中点,且PQ∥OA时,求的长;
(3)如图2,将扇形OAB沿PQ对折,使折叠后的恰好与半径OA相切于点C.若OP=3,求点O到折痕PQ的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某月食品加工厂以2万元引进一条新的生产加工线.已知加工这种食品的成本价每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y(千袋)与销售单价x(元)之间的函数关系为:y=(月获利=月销售收入﹣生产成本﹣投资成本).
(1)当销售单价定位25元时,该食品加工厂的月销量为多少千袋;
(2)求该加工厂的月获利M(千元)与销售单价x(元)之间的函数关系式;
(3)求销售单价范围在30<x≤35时,该加工厂是盈利还是亏损?若盈利,求出最大利润;若亏损,最小亏损是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】 (1)问题感知 如图1,在△ABC中,∠C=90°,且AC=BC,点P是边AC的中点,连接BP,将线段PB绕点P顺时针旋转90°到线段PD.连接AD.过点P作PE∥AB交BC于点E,则图中与△BEP全等的三角形是 ,∠BAD= °;
(2)问题拓展 如图2,在△ABC中,AC=BC=AB,点P是CA延长线上一点,连接BP,将线段PB绕点P顺时针旋转到线段PD,使得∠BPD=∠C,连接AD,则线段CP与AD之间存在的数量关系为CP=AD,请给予证明;
(3)问题解决 如图3,在△ABC中,AC=BC=AB=2,点P在直线AC上,且∠APB=30°,将线段PB绕点P顺时针旋转60°到线段PD,连接AD,请直接写出△ADP的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300元.
(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;
(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正n边形的周长为60,边长为a
(1)当n=3时,请直接写出a的值;
(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】 有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.
(1)已知﹣m☆3的结果是﹣4,则m= .
(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com