相关习题
 0  362614  362622  362628  362632  362638  362640  362644  362650  362652  362658  362664  362668  362670  362674  362680  362682  362688  362692  362694  362698  362700  362704  362706  362708  362709  362710  362712  362713  362714  362716  362718  362722  362724  362728  362730  362734  362740  362742  362748  362752  362754  362758  362764  362770  362772  362778  362782  362784  362790  362794  362800  362808  366461 

科目: 来源: 题型:

【题目】如图,AB⊙O的弦,BC⊙O于点B,AD⊥BC,垂足为D,OA⊙O的半径,且OA=3.

(1)求证:AB平分∠OAD;

(2)若点E是优弧 上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)

查看答案和解析>>

科目: 来源: 题型:

【题目】中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开珍惜水资源,节约每一滴水系列教育活动.为响应学校号召,数学小组做了如下调查:

小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.

经结合图2和图3回答下列问题:

(1)参加问卷调查的学生人数为   人,其中选C的人数占调查人数的百分比为   

(2)在这所学校中选比较注意,偶尔水龙头滴水的大概有   人.若在该校随机抽取一名学生,这名学生选B的概率为   

请结合图1解答下列问题:

(3)在水龙头滴水情况图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.

(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:

AD是∠BAC的平分线;

CDADC的高;

③点DAB的垂直平分线上;

④∠ADC=61°

其中正确的有( .

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,BAD<90°,O与边AB,AD都相切,AO=10,则O的半径长等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,六边形ABCDEF的内角都相等, ,则下列结论成立的个数是

四边形ACDF是平行四边形; 六边形ABCDEF既是中心对称图形,又是轴对称图形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点OEFBC分别交ABAC于点EF,已知ABC的周长为8BCxAEF的周长为y,则表示yx的函数图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(1),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )

A.(0,﹣2)B.(1,﹣)C.(20)D.(,﹣1)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+cx轴交于点A(﹣10)和点B30),与y轴交于点C,连接BC交抛物线的对称轴于点ED是抛物线的顶点.

1)求此抛物线的解析式;

2)直接写出点C和点D的坐标;

3)若点P在第一象限内的抛物线上,且SABP4SCOE,求P点坐标;

4)在平面内,是否存在点M使点ABCM构成平行四边形,如果存在,直接写出M坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】折纸是一种许多人熟悉的活动.近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:

(综合与实践)

操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN

操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D′;

操作三:如图3,将正方形纸片ABCD的左上角沿MD′折叠再展开,折痕MD′与边AB交于点P

(问题解决)

请在图3中解决下列问题:

1)求证:BPDP

2APBP   

(拓展探究)

3)在图3的基础上,将正方形纸片ABCD的左下角沿CD′折叠再展开,折痕CD′与边AB交于点Q.再将正方形纸片ABCD过点D′折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4.试探究:点Q与点E分别是边ABAD的几等分点?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

1)请直接写出冲锋舟从地到地所用的时间.

2)求水流的速度.

3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?

查看答案和解析>>

同步练习册答案