科目: 来源: 题型:
【题目】如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示:
时间段 (小时/周) | 小丽抽样 人数 | 小杰抽样 人数 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每组可含最低值,不含最高值)
(1)你认为哪位同学抽取的样本不合理?请说明理由;
(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;
(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度为1.5m,测得教学楼的顶部A处的仰角为30°,则教学楼的高度是( )
A.55.5mB.54mC.19.5mD.18m
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0)、点C(8,0)两点,与y轴交于点A.
(1)求二次函数的表达式;
(2)连接AC、AB,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,线段AC上有一动点P,连接PM,求PM+PC的值最小时,点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,点E是正方形ABCD边CD上任意点,以DE为边作正方形DEFG,连接BF.点M是线段BF中点,射线EM与BC交于点H,连接CM.
(1)请直接写出CM和EM的数量关系和位置关系:__________;
(2)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图2所示,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)若DG=,AB=4.
①把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,连接EM,如图3所示,其他条件不变,计算EM的长度;
②若把图1中的正方形DEFG绕点D顺时针旋转一周,请直接写出EM的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】Rt△OBC在直角坐标系内的位置如图所示,点C在y轴上,∠OCB=90°,反比例函数y=(k>0)在第一象限内的图象与OB边交于点D(m,3),与BC边交于点E(n,6).
(1)求m与n的数量关系;
(2)连接CD,若△BCD的面积为12,求反比例函数的解析式和直线OB的解析式;
(3)设点P是线段OB边上的点,在(2)的条件下,是否存在点P,使得以B、C、P为项点的三角形与△BDE相似?若存在,求出此时点P户的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.
(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?
(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半轻的⊙O与AC相切于点D,BD平分∠ABC,∠ABC=60°.
(1)求∠C的度数;
(2)若圆的半径OB=2,求线段CD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com