科目: 来源: 题型:
【题目】如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的边长为4时,直接写出四边形GHMN的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】(12分)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;….按此规律继续旋转,直至得到点P2020为止,则AP2020=_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,按以下步骤作图:①分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN,分别交边AB,BC于点D和E,连接CD.若∠BCA=90°,AB=8,则CD的长为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于和,与轴交于点.
(1)求该抛物线的解析式;
(2)绕点旋转的直线:与轴相交于点,与抛物线相交于点,且满足时,求直线的解析式;
(3)点为抛物线上的一点,点为抛物线对称轴上的一点,是否存在以点,,,为顶点的平行四边形,若存在,请直接写出点的坐标:若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在中,,,点是直线上一动点,点是直线上动点,点是直线上一动点,且,.
(1)如图1,当点,,分别在,,边上时,请你判断线段,,之间有怎样的数量关系?请直接写出你的结论;
(2)如图2,当在延长线上,在延长线上,在延长线上时,(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请判断线段,,之间有怎样的数量关系?并证明你的结论;
(3)若,当时,请直接写出的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】鄂尔多斯市某百货商场销售某一热销商品A,其进货和销售情况如下:用16000元购进一批该热销商品A,上市后很快销售一空,根据市场需求情况,该商场又用7500元购进第二批该商品,已知第二批所购件数是第一批所购件数的一半,且每件商品的进价比第一批的进价少10元.
(1)求商场第二批商品A的进价;
(2)商场同时销售另一种热销商品B,已知商品B的进价与第二批商品A的进价相同,且最初销售价为165元,每天能卖出125件,经市场销售发现,若售价每上涨1元,其每天销售量就减少5件,问商场该如何定售价,每天才能获得最大利润?并求出每天的最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A
(1)求和的值.
(2)过点B作BC∥x轴,与双曲线交于点C,求△OAC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com