相关习题
 0  362942  362950  362956  362960  362966  362968  362972  362978  362980  362986  362992  362996  362998  363002  363008  363010  363016  363020  363022  363026  363028  363032  363034  363036  363037  363038  363040  363041  363042  363044  363046  363050  363052  363056  363058  363062  363068  363070  363076  363080  363082  363086  363092  363098  363100  363106  363110  363112  363118  363122  363128  363136  366461 

科目: 来源: 题型:

【题目】某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45cos27°=0.89tan27°=0.5sin50°=0.77cos50°=0.64tan50°=1.2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1Pmn)在抛物线y=ax2-4axa0)上,E为抛物线的顶点.

1)求点E的坐标(用含a的式子表示);

2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点Ex轴的平行线DE,过点Px轴的垂线交DE于点D,连接CD,求证:CDOE

3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于AB两点,平移后的抛物线的顶点为QP是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过QDx轴、y轴的平行线交于点E,且∠EPQ=2APQ,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是

(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;

(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017浙江省湖州市,第23题,10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).

(1)设每天的放养费用是a万元,收购成本为b万元,求ab的值;

(2)设这批淡水鱼放养t天后的质量为mkg),销售单价为y/kg.根据以往经验可知:mt的函数关系为yt的函数关系如图所示.

①分别求出当0≤t≤5050<t≤100时,yt的函数关系式;

②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)

查看答案和解析>>

科目: 来源: 题型:

【题目】折纸飞机是我们儿时快乐的回忆,现有一张长为290mm,宽为200mm的白纸,如图所示,以下面几个步骤折出纸飞机:(说明:第一步:白纸沿着EF折叠,AB边的对应边AB′与边CD平行,将它们的距离记为x;第二步:将EMMF分别沿着MHMG折叠,使EMMF重合,从而获得边HGAB′的距离也为x),则PD=______mm

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点ABx轴的上方,∠AOB90°OAOB分别与函数的图象交于AB两点,以OAOB为邻边作矩形AOBC.当点Cy轴上时,分别过点A和点BAEx轴,BFx轴,垂足分别为EF,则_______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线a≠0)的对称轴为直线x1,与x轴的交点(0),(0),且﹣10,有下列5个结论:①abc0;②ba+c;③a+bkka+b)(k为常数,且k≠1);④2c3b;⑤若抛物线顶点坐标为(1n),则4acn),其中正确的结论有(  )个.

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与探究

如图,在平面直角坐标系中,已知抛物线x轴交于AB两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点AD的坐标分别为(-20),(6,-8).

1)求抛物线的函数表达式,并分别求出点B和点E的坐标;

2)试探究抛物线上是否存在点F,使,若存在,请直接写出点F的坐标;若不存在,请说明理由;

3)若点Py轴负半轴上的一个动点,设其坐标为(0m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)阅读理解

利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA1PBPC2.求∠BPC的度数.

为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____

(2)类比迁移

如图2,点P是等腰RtABC内的一点,∠ACB90°PA2PBPC1,求∠APC的度数;

(3)拓展应用

如图3,在四边形ABCD中,BC3CD5ABACAD.∠BAC2ADC,请直接写出BD的长.

查看答案和解析>>

同步练习册答案