科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,圆心为P(,)的动圆经过点A(1,2)且与轴相切于点B.
(1)当=2是,求⊙P的半径;
(2)求关于的函数解析式,在图②中画出此函数图像;
(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图像进行定义:此函数图像可以看成是到 的距离等于到 的距离的所有点的集合;
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(,)在点C的右侧,请利用图②,则cos∠APD= .
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂生产的B产品不少于38件且不多于40件,若希望用于购买甲、乙两种材料的资金最少,应如何安排生产?最少购买资金是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4)
【1】当时,求弦PA、PB的长度;
【2】当x为何值时,PD×CD的值最大?最大值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长均为1,线段AB的端点均在小正方形的顶点上.
(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;
(2)在图中画出以线段AB为一腰,底边长为的等腰三角形ABE,点E在小正方形的顶点,则CE= ;
(3)F是边AD上一动点,则CF+EF的最小值是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】我市某中学为了解本校学生对“扫黑除恶专项斗争”的了解程度,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)在本次抽样调查中,共抽取了 名学生.
(2)在扇形统计图中,“不了解”部分所对应的圆心角的度数为 .
(3)补全条形统计图.
(4)若该校有2000名学生,根据调查结果,对“扫黑除恶专项斗争”“了解一点”的学生人数约为多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同线路行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′若∠ADC=60°,∠ADA′=45°,则∠DA′E′=______度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别于函数,的图像交于B、A两点,则∠OAB大小的变化趋势为 ( )
A. 逐渐变小B. 逐渐变大C. 时大时小D. 保持不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com