相关习题
 0  363114  363122  363128  363132  363138  363140  363144  363150  363152  363158  363164  363168  363170  363174  363180  363182  363188  363192  363194  363198  363200  363204  363206  363208  363209  363210  363212  363213  363214  363216  363218  363222  363224  363228  363230  363234  363240  363242  363248  363252  363254  363258  363264  363270  363272  363278  363282  363284  363290  363294  363300  363308  366461 

科目: 来源: 题型:

【题目】为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配AB两种园艺造型共50个摆放在校园内,已知搭配一个A种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点D是以AB为直径的半圆O上一点,连接BD,点C的中点,过点C作直线BD的垂线,垂足为点E

求证:(1CE是半圆O的切线;

2BC2ABBE

查看答案和解析>>

科目: 来源: 题型:

【题目】景观大道要进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要370元;购买A种树苗5棵,B种树苗2棵,需要430

1)求购买AB两种树苗每棵各需多少元?

2)现需购买这两种树苗共100棵,要求购买这两种树苗的资金不超过5860元,求最多能购买多少棵A种树苗?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四边形OABC是菱形,CDx轴,垂足为D,函数 的图象经过点C,且与AB交于点E.若OD2,则△OAE的面积为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).

(1)求抛物线y=x2+bx+c的表达式;

(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;

(3)点Px轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=   

②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是   ;(整点指横坐标、纵坐标都为整数的点)

(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是   

查看答案和解析>>

科目: 来源: 题型:

【题目】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;

(2)求出a的值;

(3)求张师傅途中加油多少升?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,B=60°,BC=2,A′B′C可以由ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AEBF交于点G.下列结论错误的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

同步练习册答案