科目: 来源: 题型:
【题目】《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.
(1)判断2019和2020是否是“纯数”?请说明理由;
(2)求出不大于100的“纯数”的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:
七年级10名学生的竞赛成绩是:99,80,99,86,99,96,96,100,89,82
八年级10名学生的竞赛成绩在C组中的数据是:94,90,94
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△,DC与AB交于点E,连结,若AD=AC′=2,BD=3则点D到BC的距离为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A点,D点分别在x轴、y轴上,对角线BD∥x轴,反比例函数的图象经过矩形对角线的交点E,若点A(2,0),D(0,4),则k的值为( )
A.16B.20C.32D.40
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在ABCD中,AE⊥BC于E,E恰为BC的中点.tanB=2.
(1)求证:AD=AE;
(2)如图2.点P在BE上,作EF⊥DP于点F,连结AF.线段DF、EF与AF之间有怎样的数量关系?并说明理由;
(3)请你在图3中画图探究:当P为射线EC,上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?请在图3中补全图形,直接写出结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l2:与x轴交于点A;与y轴交于点B,以x轴为对称轴作直线的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A2B1B2、…△AnBnBn﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A2B1C2B2…、四边形AnBnnBn﹣1的面积分别是S1、S2、S3、…、Sn,则Sn为_____.(用含有n的代数式表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】矩形ABCD中,AB=8,AD=6,P、Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别点E,F,点Q关于直线BC,CD的对称点分别是点G、H.若由点E,F,G,H构成的四边形恰好为菱形,则PQ的长为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.
(1)直接写出D点和E点的坐标;
(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6?
(3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com