相关习题
 0  363147  363155  363161  363165  363171  363173  363177  363183  363185  363191  363197  363201  363203  363207  363213  363215  363221  363225  363227  363231  363233  363237  363239  363241  363242  363243  363245  363246  363247  363249  363251  363255  363257  363261  363263  363267  363273  363275  363281  363285  363287  363291  363297  363303  363305  363311  363315  363317  363323  363327  363333  363341  366461 

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AC=8BC=6CDAB于点D,点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线段CD的长;

(2)当△CPQ与△BDC相似时,求t值;

(3) 设△CPQ的面积为y,求y与t的函数关系式,并判断△PCQ的面积是否有最大值还是最小值?若有,求出t为何值时y的最值,若没有,则说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】春节假期间,小明和小华都准备在某市的九龙瀑布(记为A)、凤凰谷(记为B)、彩色沙林(记为C)、海峰湿地(记为D)这四个景点中任选一个去游玩,每个景点被选中的可能性相同.

(1)求小明去凤凰谷的概率;

(2)用树状图或列表的方法求小明和小华都去九龙瀑布的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,AB=4cmBC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.若动点MN同时出发,相遇时停止运动,若点E在线段BC上,且BE=3cm,经过_____秒钟,点AEMN组成平行四边形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,对称轴为直线x=﹣1的抛物线yx2+bx+cx轴相交于AB两点,其中点A的坐标为(﹣30).

1)求点B的坐标;

2)求二次函数的解析式;

3)已知C为抛物线与y轴的交点,设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=PBD.延长PD交圆的切线BE于点E

(1)证明:直线PD是⊙O的切线.

(2)如果∠BED=60°,,求PA的长.

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场试销一种成本为50元/件的恤.经试销发现,销售量(件)与销售单价(元/件)符合一次函数关系,试销数据如下表:

售价(元/件)

……

55

60

70

……

销量(件)

……

75

70

60

……

(1)求一次函数的表达式;

(2)若该商场获得利润为W元,试写出利润W与销售单价之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图,请结合以上信息解答下列问题:

1)求m的值;

2)请补全上面的条形统计图;

3)在图2中,“乒乓球”所对应扇形的圆心角的度数为多少度?

4)已知该校共有1200名学生,请你估计该校约有多少名学生最喜爱足球活动?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数yax23ax+c的图象与x轴交于点AB,与y轴交于点C直线y=﹣x+4经过点BC

1)求抛物线的表达式;

2)过点A的直线交抛物线于点M,交直线BC于点N

N位于x轴上方时,是否存在这样的点M,使得AMNM53?若存在,求出点M的坐标;若不存在,请说明理由.

连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB2倍时,请求出点M的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】(操作发现)如图(1),在△OAB和△OCD中,OAOBOCOD,∠AOB=∠COD45°,连接ACBD交于点M

ACBD之间的数量关系为   

AMB的度数为   

(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;

(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABCDCE组成的图形,其中∠ACB=∠DCE90°,∠A=∠D30°且DEB在同一直线上,CE1BC ,求点AD之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:

1)当轿车刚到乙地时,此时货车距离乙地   千米;

2)当轿车与货车相遇时,求此时x的值;

3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

查看答案和解析>>

同步练习册答案