相关习题
 0  363167  363175  363181  363185  363191  363193  363197  363203  363205  363211  363217  363221  363223  363227  363233  363235  363241  363245  363247  363251  363253  363257  363259  363261  363262  363263  363265  363266  363267  363269  363271  363275  363277  363281  363283  363287  363293  363295  363301  363305  363307  363311  363317  363323  363325  363331  363335  363337  363343  363347  363353  363361  366461 

科目: 来源: 题型:

【题目】某农作物的生长率P与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数刻画;当25≤t≤37时可近似用函数刻画.

(1)h的值.

(2)按照经验,该作物提前上市的天数m()与生长率P满足函数关系:

生长率P

0.2

0.25

0.3

0.35

提前上市的天数m(天)

0

5

10

15

①请运用已学的知识,求m关于P的函数表达式;

②请用含的代数式表示m

(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w()与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

查看答案和解析>>

科目: 来源: 题型:

【题目】小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在ABC中,ADBC于点D,正方形PQMN的边QMBC上,顶点PN分别在AB AC上,若BC=6AD=4,求正方形PQMN的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′BC边上,N′ABC内,连结B N′并延长交AC于点N,画NMBC于点MNPNMAB于点PPQBC于点Q,得到四边形PQMN.小波把线段BN称为波利亚线

(3)推理:证明图2中的四边形PQMN 是正方形.

(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQEM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.

请帮助小波解决温故推理拓展中的问题.

查看答案和解析>>

科目: 来源: 题型:

【题目】某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BCCD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点ABC在同一直线时,斗杆顶点D升至最高点(示意图4)

(1)求挖掘机在初始位置时动臂BCAB的夹角∠ABC的度数.

(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1)?

(考数据:sin50°≈0.77cos50°≈0.64sin70°≈0.94cos70°≈0.34

查看答案和解析>>

科目: 来源: 题型:

【题目】在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的 情况进行调查.其中AB 两小区分别有 500 名居民参加了测试,社区从中各随机 抽取50 名居民成绩进行整理得到部分信息:

(信息一)A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值)

(信息二)上图中,从左往右第四组的成绩如下

(信息三)AB 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺)

根据以上信息,回答下列问题:

(1)A 小区 50 名居民成绩的中位数.

(2)请估计A 小区 500 名居民成绩能超过平均数的人数.

(3)请尽量从多个角度,选择合适的统计量分析 AB 两小区参加测试的居民掌握垃圾分类知识的情况.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一副含30°45°角的三角板ABCEDF拼合在个平面上,边ACEF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为__cm;连接BD,则△ABD的面积最大值为___cm2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在⊙O中,弦AB=1,点CAB上移动,连结OC,过点CCDOC交⊙O于点D,则CD的最大值为___

查看答案和解析>>

科目: 来源: 题型:

【题目】小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2x1+x2>2m,则y1<y2;④当-1<x<2时,yx的增大而增大,则m的取值范围为m≥2其中错误结论的序号是(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019526日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是(

A. 签约金额逐年增加

B. 与上年相比,2019年的签约金额的增长量最多

C. 签约金额的年增长速度最快的是2016

D. 2018年的签约金额比2017年降低了22.98%

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知Px1y1Qx2y2),定义PQ两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为PQ两点的直角距离,记作dPQ).即dPQ)=|x2x1|+|y2y1|

如图1,在平面直角坐标系xOy中,A14),B52),则dAB)=|51|+|24|6

1)如图2,已知以下三个图形:

①以原点为圆心,2为半径的圆;

②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;

③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.

P是上面某个图形上的一个动点,且满足dOP)=2总成立.写出符合题意的图形对应的序号   

2)若直线ykx+3)上存在点P使得dOP)=2,求k的取值范围.

3)在平面直角坐标系xOy中,P为动点,且dOP)=3,⊙M圆心为Mt0),半径为1.若⊙M上存在点N使得PN1,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知梯形ABCD中,ADBCABACE是边BC上的点,且∠AED=∠CADDEAC于点F

1)求证:ABE∽△DAF

2)当ACFCAEEC时,求证:ADBE

查看答案和解析>>

同步练习册答案