科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线 与双曲线 相交于A、B两点,且A点横坐标为2,C是第一象限内双曲线上一点,连接CA并延长交y轴于点D,连接BD,BC.
(1)k的值是________;
(2)若AD=AC,则△BCD的面积是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正△ABC中,点P为BC边上的任意一点(不与点B,C重合),且∠APD= 60° ,PD交边AB于点D. 设BP= x ,BD= y ,右图为y关于x的函数大致图象,下列判断中正确的是( )
①正△ABC中边长为4;②图象的函数表达式是 , 其中 0<x<4;③ m=1
A. ①②③B. ①②C. ②③D. ①③
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.
(1)如图1,已知点A(0,3),B(2,3).
①设点O与线段AB上一点的距离为d,则d的最小值是 ,最大值是 ;
②在P1(,0),P2(1,4),P3(﹣3,0)这三个点中,与点O是线段AB的一对平衡点的是
(2)如图2,已知圆O的半径为1,点D的坐标为(5,0),若点E(x,2)在第一象限,且点D与点E是圆O的一对平衡点,求x的取值范围.
(3)如图3,已知点H(﹣3,0),以点O为圆心,OH长为半径画弧交x轴的正半轴于点K,点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,圆C是以点C为圆心,半径为2的圆,若弧HK上的任意两个点都是圆C的一对平衡点,直接写出b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于x的一元二次方程x2﹣3x+k=0有实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为积极创建全国文明城市,我市对某路口的行人交通违章情况进行了20天的调查,将所得的数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)第13天,这一路口的行人交通违章次数是 ;这20天中,行人交通违章7次的有 天.
(2)这20天中,行人交通违章6次的有 天;请把图2中的频数直方图补充完整.
(3)请你根据图2绘制一个扇形统计图,并求行人违章9次的天数在扇形统计图中所对的圆心角度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知抛物线与x轴交于点A、在B左侧,与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且,则点P的坐标是______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知BC是⊙O的直径,点A,D在⊙O上,∠B=2∠CAD,在BC的延长线上有一点P,使得∠P=∠ACB,弦AD交直径BC于点E.
(1)求证:DP与⊙O相切;
(2)判断△DCE的形状,并证明你的结论;
(3)若CE=2,DE=,求线段BC的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校一课外小组准备进行“绿色环保”的宣传活动,需要印刷一批宣传单,学校附近有甲、乙两家印刷社,甲印刷社收费y(元)与印数x(张)的函数关系是:y=0.15x;乙印刷社收费y(元)与印数x(张)的函数关系如图所示:
(1)写出乙印刷社的收费y(元)与印数x(张)之间的函数关系式;
(2)若该小组在甲、乙两印刷社打印了相同数量的宣传单共用去70元,则共打印多少张宣传单?
(3)活动结束后,市民反映良好,兴趣小组决定再加印1500张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当四边形MENF是正方形时,求AD:AB的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:
(1)这次被调查的学生共有多少人,并将条形统计图补充完整:
(2)在扇形统计图中,求出“优”所对应的圆心角度数;
(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com