科目: 来源: 题型:
【题目】太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光与玻璃吸热管垂直).已知:支架CF=100 cm,CD=20 cm,FE⊥AD于E,若θ=37°,求EF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了解家长和学生“参与防溺水教育”的情况,在本校学生中随机抽取部分学生做调查,把调查的数据分为以下4类情形:A:仅学生自己参与;B:家长与学生一起参与;C:仅家长自己参与;D:家长和学生都未参与;并把调查结果绘制成了以下两种统计图(不完整).
根据以上统计图,解答下列问题:
(1)本次接受调查的学生共有_____人.
(2)已知B类人数是D类人数的6倍.
①补全条形统计图;
②求扇形统计图中B类的圆心角度数;
③根据调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=5,BC=4. 点D是边AC的中点,点E在边AB上,将△ADE沿DE翻折,使点A落在点A′处,当线段AE的长为_______时,A′E∥BC.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平行四边形ABCD的周长是18 cm,其对角线AC,BD相交于点O,过点O的直线分别与AD,BC相交于点E,F,且OE=2 cm,则四边形CDEF的周长是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】将直角三角形纸板OAB按如图所示方式放置在平面直角坐标系中,OB在x轴上,OB=4,OA=2将三角形纸板绕原点O逆时针旋转,每秒旋转60°,则第2019秒时,点A的对应点A ′ 的坐标为( )
A. (-3,-)B. (3,-)C. (-3,)D. (0,2)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,抛物线与轴交于点,与轴交于点,将直线绕点逆时针旋转90°,所得直线与轴交于点.
(1)求直线的函数解析式;
(2)如图②,若点是直线上方抛物线上的一个动点
①当点到直线的距离最大时,求点的坐标和最大距离;
②当点到直线的距离为时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.
请根据图中信息,解决下列问题:
(1)两个班共有女生多少人?
(2)将频数分布直方图补充完整;
(3)求扇形统计图中部分所对应的扇形圆心角度数;
(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在平面直角坐标系内,A,B为x轴上两点,以AB为直径的⊙M交y轴于C,D两点,C为的中点,弦AE交y轴于点F,且点A的坐标为(2,0),CD=8
(1)求⊙M的半径;
(2)动点P在⊙M的圆周上运动.
①如图1,当FP的长度最大时,点P记为P,在图1中画出点P0,并求出点P0横坐标a的值;
②如图1,当EP平分∠AEB时,求EP的长度;
③如图2,过点D作⊙M的切线交x轴于点Q,当点P与点A,B不重合时,请证明为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.
如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.
(1)直接写出下列3个小题的答案.
①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为 .
②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为 .
③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有 个.
(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.
①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.
②当点P介于点R与点O之间(包括点R,O)时,求PQ+QT的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com