相关习题
 0  363348  363356  363362  363366  363372  363374  363378  363384  363386  363392  363398  363402  363404  363408  363414  363416  363422  363426  363428  363432  363434  363438  363440  363442  363443  363444  363446  363447  363448  363450  363452  363456  363458  363462  363464  363468  363474  363476  363482  363486  363488  363492  363498  363504  363506  363512  363516  363518  363524  363528  363534  363542  366461 

科目: 来源: 题型:

【题目】如图,AC⊙O的一条弦,AP⊙O的切线。作BM=AB并与AP交于点M,延长MBAC于点E,交⊙O于点D,连接AD.

1)求证:AB=BE

2)若⊙O的半径R=5AB=6,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】本学期初,某校为迎接中华人民共和国建国七十周年,开展了以不忘初心,缅怀革命先烈,奋斗新时代为主题的读书活动。校德育处对本校七年级学生四月份阅读该主题相关书籍的读书量(下面简称:读书量)进行了随机抽样调查,并对所有随机抽取学生的读书量(单位:本)进行了统计,如下图所示:

根据以上信息,解答下列问题:

1)补全上面两幅统计图,填出本次所抽取学生四月份读书量的众数为

2)求本次所抽取学生四月份读书量的平均数;

3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份读书量5本的学生人数。

查看答案和解析>>

科目: 来源: 题型:

【题目】小明利用刚学过的测量知识来测量学校内一棵古树的高度。一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示。于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米。已知点FGDB在同一水平直线上,且EFCDAB均垂直于FB,求这棵古树的高度AB。(小平面镜的大小忽略不计)

查看答案和解析>>

科目: 来源: 题型:

【题目】现有AB两个不透明袋子,分别装有3个除颜色外完全相同的小球。其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球。

1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;

2)小华和小林商定了一个游戏规则:从摇匀后的AB两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,AB=8ACBD交于点ONAO的中点,点MBC边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为___.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3BC=6,若点EF分别在AB,CD上,且BE=2AEDF=2FCGH分别是AC的三等分点,则四边形EHFG的面积为(

A. 1B. C. 2D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,D是矩形AOBC的对称中心,A(0,4)B60),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为___.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB⊙O的直径,EFEB⊙O的弦,且EF=EBEFAB交于点C,连接OF,若∠AOF=40°,则∠F的度数是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠B=30°∠C=45°AD平分∠BACBC于点DDE⊥AB,垂足为E。若DE=1,则BC的长为(

A.2+B.C.D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,的边轴上,,以为顶点的抛物线经过点,交y轴于点,动点在对称轴上.

1)求抛物线解析式;

2)若点点出发,沿方向以1个单位/秒的速度匀速运动到点停止,设运动时间为秒,过点于点,过点平行于轴的直线交抛物线于点,连接,当为何值时,的面积最大?最大值是多少?

3)若点是平面内的任意一点,在轴上方是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案