相关习题
 0  363574  363582  363588  363592  363598  363600  363604  363610  363612  363618  363624  363628  363630  363634  363640  363642  363648  363652  363654  363658  363660  363664  363666  363668  363669  363670  363672  363673  363674  363676  363678  363682  363684  363688  363690  363694  363700  363702  363708  363712  363714  363718  363724  363730  363732  363738  363742  363744  363750  363754  363760  363768  366461 

科目: 来源: 题型:

【题目】解方程:(1) 2.

【答案】1x1 =1 x2= (2) x1 =-1x2= .

【解析】试题分析:

根据两方程的特点使用“因式分解法”解两方程即可.

试题解析

1)原方程可化为:

方程左边分解因式得

解得 .

2)原方程可化为: ,即

解得 .

型】解答
束】
20

【题目】已知x1x2是关于x的一元二次方程x22(m1)xm250的两实根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1x2恰好是△ABC另外两边的边长,求这个三角形的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x为整数

直接写出每天游客居住的房间数量yx的函数关系式.

设宾馆每天的利润为W,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?

某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000,②宾馆为游客居住的房间共支出费用没有超过600,③每个房间刚好住满2问:这天宾馆入住的游客人数最少有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,CEABCD的边AB的垂直平分线,垂足为点OCEDA的延长线交于点E.连接ACBEDODOAC交于点F,则下列结论:

四边形ACBE是菱形;

②∠ACD=∠BAE

AFBE23

S四边形AFOESCOD23

其中正确的结论有_____.(填写所有正确结论的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线的对称轴为直线,与轴的一个交点在之间,其部分图象如图所示.则下列结论:;②;③;④为实数);是该抛物线上的点,则,正确的个数有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目: 来源: 题型:

【题目】对于二次函数和一次函数,我们把 称为这两个函数的再生二次函数,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:

(尝试)

1)当t=2时,抛物线的顶点坐标为 .

2)判断点A是否在抛物线E上;

3)求n的值.

(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,定点的坐标 .

(应用)二次函数是二次函数和一次函数 的一个再生二次函数吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,在三角形ABC中,∠ACB=90°AC=6BC=8,点D为边BC的中点,射线DEBCAB于点E.点P从点D出发,沿射线DE以每秒1个单位长度的速度运动.以PD为斜边,在射线DE的右侧作等腰直角DPQ.设点P的运动时间为t(秒).

1)用含t的代数式表示线段EP的长.

2)求点Q落在边AC上时t的值.

3)当点QABC内部时,设PDQABC重叠部分图形的面积为S(平方单位),求St之间的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

1)求甲、乙两车行驶的速度VV.

2)求m的值.

3)若甲车没有故障停车,求可以提前多长时间两车相遇.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求y与x之间的函数表达式;

(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】中华文化历史悠久,包罗万象.某校为了加强学生对中华传统文化的认识和理解,营造校园文化氛围,举办了弘扬中华传统文化,做新时代的中学生的知识竞赛.以下是从七年、八年两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:

七年级: 76 88 93 65 78 94 89 68 95 50

89 88 89 89 77 94 87 88 92 91

八年级: 74 97 96 89 98 74 69 76 72 78

99 72 97 76 99 74 99 73 98 74

1)根据上面的数据,将下列表格补充完整,整理、描述数据:

七年级

1

2

6

八年级

0

1

10

1

8

(说明:成绩90分及以上为优秀,60分以下为不合格)分析数据:

年级

平均数

中位数

众数

七年级

84

88.5

八年级

84.2

74

2)为调动学生学习传统文化的积极性,七年级根据学生的成绩制定了奖励标准,凡达到或超过这个标准的学生将获得奖励.如果想让一半左右的学生能获奖,应根据______来确定奖励标准比较合适.(填平均数众数中位数);

3)若八年级有800名学生,试估计八年级学生成绩优秀的人数;

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数的图象过点和点,对称轴为直线

求该二次函数的关系式和顶点坐标;

结合图象,解答下列问题:

①当时,求函数的取值范围.

②当时,求的取值范围.

查看答案和解析>>

同步练习册答案