科目: 来源: 题型:
【题目】如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图①,在四边形中,,点是的中点,若是的平分线,试判断,,之间的等量关系.
解决此问题可以用如下方法:延长交的延长线于点,易证得到,从而把,,转化在一个三角形中即可判断.
,,之间的等量关系________;
(2)问题探究:如图②,在四边形中,,与的延长线交于点,点是的中点,若是的平分线,试探究,,之间的等量关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若(且),那么叫做以为底的对数,记作,比如指数式可以转化为对数式,对数式,可以转化为指数式.
我们根据对数的定义可得到对数的一个性质:
(,,,),理由如下:
设,,则,,
∴,由对数的定义得
又∵
∴
根据阅读材料,解决以下问题:
(1)将指数式转化为对数式________;
(2)求证:(,,,)
(3)拓展运用:计算________.
查看答案和解析>>
科目: 来源: 题型:
【题目】安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数的图象与轴分别交于、两点,与轴交于点,.则由抛物线的特征写出如下结论:①;②;③;④.其中正确的个数是()
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于为半径作弧,两弧交于点M,N;②作直线MN,且恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是( )
A.B.C.若AB=4,则D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中, AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(-3,0),线段AB交轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿轴向右运动,设运动的时间为秒.
(1)当△BPE是等腰三角形时,求的值;
(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切时,求的值和此时点C的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com