科目: 来源: 题型:
【题目】某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件) | 购进所需费用 (元) | ||
A | B | ||
第一次 | 20 | 50 | 4100 |
第二次 | 30 | 40 | 3700 |
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定商品以每件50元出售,商品以每件元出售.为满足市场需求,需购进、两种商品共件,且商品的数量不少于商品数量的倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点,与轴、轴分别交于点、,过点作轴,垂足为.若,.
(1)求反比例函数和一次函数的解析式;
(2)当时,求x的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(2,0).OC=3OB.
(1)求抛物线的解析式;
(2)若点P是线段AC下方抛物线上的动点,求三角形PAC面积的最大值.
(3)在(2)的条件下,△PAC的面积为S,其中S为整数的点P作“好点”,则存在多个“好点”,则所有“好点”的个数为
(4)在(2)的条件下,以PA为边向直线AC右上侧作正方形APHG,随着点P的运动,正方形的大小、位置也随之改变,当顶点H或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)求证:BD1=CE1;
(2)当∠CPD1=2∠CAD1时,则旋转角为α= (直接写结果)
(3)连接PA,△PAB面积的最大值为 (直接写结果)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,抛物线y=﹣x2+bx+c与x轴,y轴分别相交于点A(﹣1,0),B(0,3)两点,其顶点为D,
(1)求该抛物线的解析式;
(2)若抛物线与x轴另一个交点为E,求四边形ABDE的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AD=20,AB=32,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点F落在矩形ABCD的对称轴上时,则DE的长为_____
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+,BC=2,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com