科目: 来源: 题型:
【题目】某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
(1)求每辆A,B两种自行车的进价分别是多少?
(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.
(1)求证:AC是⊙O的切线;
(2)若OB=10,CD=8,求BE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在 Rt△ABC 中BC=2,以 BC 的中点 O 为圆心的⊙O 分别与 AB,AC 相切于 D,E 两点,的长为( )
A.B.C.πD.2π
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究:
如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.
(1)求点C的坐标及抛物线的表达式;
(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F(点F在第一象限).设点G的横坐标为m.
①点G的纵坐标用含m的代数式表示为 ;
②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;
③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面材料,完成相应的任务:
(1)小明在研究命题①时,在图1的正方形网格中画出两个符合条件的四边形,由此判断命题①是 命题(填“真”或“假”);
(2)小彬经过探究发现命题②是真命题,请你结合图2证明这一命题;
(3)小颖经过探究又提出了一个新的命题:“若AB=A′B′,BC=B′C′,CD=C′D' , ,则四边形ABCD≌四边形A′B′C′D′,请在横线上填写两个关于“角”的条件,使该命题为真命题.
查看答案和解析>>
科目: 来源: 题型:
【题目】合与实践﹣﹣探究图形中角之间的等量关系及相关问题.
问题情境:
正方形ABCD中,点P是射线DB上的一个动点,过点C作CE⊥AP于点E,点Q与点P关于点E对称,连接CQ,设∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如图1,为探究α与β的关系,勤思小组的同学画出了0°<α<45°时的情形,射线AP与边CD交于点F.他们得出此时α与β的关系是β=2α.借助这一结论可得当点Q恰好落在线段BC的延长线上(如图2)时,α= °,β= °;
深入探究:
(2)敏学小组的同学画出45°<α<90°时的图形如图3,射线AP与边BC交于点G.请猜想此时α与β之间的等量关系,并证明结论;
拓展延伸:
(3)请你借助图4进一步探究:①当90°<α<135°时,α与β之间的等量关系为 ;
②已知正方形边长为2,在点P运动过程中,当α=β时,PQ的长为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】根据《太原市电动自行车管理条例》的规定,2019年5月1日起,未上牌的电动自行车将禁止上路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款电动自行车.其中甲种车总进价为22500元,乙种车总进价为45000元,已知乙种车每辆的进价是甲种车进价的1.5倍,且购进的甲种车比乙种车少5辆.
(1)甲种电动自行车每辆的进价是多少元?
(2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共50辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车m辆(20≤m≤30),两种车全部售出的总利润为y元(不计其他成本).
①求y与m之间的函数关系式;
②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大?最大利润是多少?
型号 | 甲 | 乙 |
售价(元/辆) | 2000 | 2800 |
查看答案和解析>>
科目: 来源: 题型:
【题目】通达桥即小店汾河桥,是太原新建成的一座跨汾大桥,也是太原首座悬索桥.桥的主塔由曲线形拱门组成,取意“时代之门”.无人机社团的同学计划利用无人机设备测量通达桥拱门的高度.如图,他们先将无人机升至距离桥面50米高的点C处,测得桥的拱门最高点A的仰角∠ACF为30°,再将无人机从C处竖直向上升高200米到点D处,测得点A的俯角∠ADG为45°.已知点A,B,C,D,E在同一平面内,求通达桥拱门最高点A距离桥面BE的高度AB.(结果保留整数,参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目: 来源: 题型:
【题目】伊利集团是中国规模最大、产品线最全的乳制品企业.综合实践小组的同学从网上搜集到如下一些伊利集团近几年的营业状况的资料,其中图1是2013﹣2018年伊利集团营业收入及净利润情况统计图,图2是2018年伊利集团各品类业务营收比例情况统计图(数据来源:公司财报、中商产业研究院).
(1)解读信息:
综合实践小组的同学结合统计图提出了如下问题,请你解答:
①2018年,伊利集团营收及净利再次刷新行业纪录,稳居亚洲乳业第一.这一年,伊利集团实现营业收人 亿元,净利润 亿元;
②求2018年伊利集团“奶粉及奶制品“业务的营业收入(结果保留整数);
③在2013﹣2018这6年中;伊利集团净利润比上一年增长额最多的是 年;估计2019年伊利集团的净利润将比上一年增长 亿元,理由是 ;
(2)拓展活动:
如图,同学们收集了伊利集团旗下“优酸乳、谷粒多、QQ星,安幕希”四种产品的商标图片(四张图片除商标图案外完全相同,分别记为A,B,C,D)(见图3).同学们用这四张卡片设计了一个游戏,规则是:将四张图片背面朝上放在桌上,搅匀后,由甲从中随机抽取一张,记下商标名称后放回;再次搅匀后,由乙从中随机抽取一张.若两人抽到的商标相同则甲获胜;否则,乙获胜,这个规则对甲乙双方公平吗?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com