相关习题
 0  364049  364057  364063  364067  364073  364075  364079  364085  364087  364093  364099  364103  364105  364109  364115  364117  364123  364127  364129  364133  364135  364139  364141  364143  364144  364145  364147  364148  364149  364151  364153  364157  364159  364163  364165  364169  364175  364177  364183  364187  364189  364193  364199  364205  364207  364213  364217  364219  364225  364229  364235  364243  366461 

科目: 来源: 题型:

【题目】如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是(

A.-4 , 1B. 1, 2C.4 ,- 1D.1 ,- 2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使PBQ的面积等于8cm2

(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.

(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,PBQ的面积为1?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,ABACP是边BC的中点,PDABPEAC,垂足分别为DE

1)求证:PDPE

2DEBC平行吗?请说明理由;

3)请添加一个条件,使四边形ADPE为正方形,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.

(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.

(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球.

1摸出的球是白球是什么事件?它的概率是多少?

2摸出的球是黄球是什么事件?它的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料,解决问题.

小聪在探索三角形中位线性质定理证明的过程中,得到了如下启示:一条线段经过另一线段的中点,则延长前者,并且长度相等,就能构造全等三角形.如图,DABCAC边的中点,EAB上任一点,延长EDF,使DFDE,连接CF,则可得CFD≌△AED,从而把ABC剪拼成面积相等的四边形BCFE.你能从小聪的反思中得到启示吗?

1)如图1,已知ABC,试着剪一刀,使得到的两块图形能拼成平行四边形.

①把剪切线和拼成的平行四边形画在图1上,并指出剪切线应符合的条件.

②思考并回答:要使上述剪拼得到的平行四边形成为矩形,ABC的边或角应符合什么条件?菱形呢?正方形呢?(直接写出用符号表示的条件)

2)如图2,已知锐角ABC,试着剪两刀,使得到的三块图形能拼成矩形,把剪切线和拼成的矩形画在图2上,并指出剪切线应符合的条件.

查看答案和解析>>

科目: 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个AOB.现将背面完全相同,正面分别标有数1235张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标.

1)请用树状图或列表求出点P的坐标.

2)求点P落在AOB内部的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于C点,且A10).

1)求抛物线的解析式及顶点D的坐标;

2)判断ABC的形状,证明你的结论;

3)点M是抛物线对称轴上的一个动点,当CM+AM的值最小时,求M的坐标;

4)在线段BC下方的抛物线上有一动点P,求PBC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】问题:(1)如图①,在RtABC中,ABACDBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BCDCEC之间满足的等量关系式为   

探索:(2)如图②,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段ADBDCD之间满足的等量关系,并证明你的结论;

应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9CD3,求AD的长.

查看答案和解析>>

同步练习册答案