相关习题
 0  364063  364071  364077  364081  364087  364089  364093  364099  364101  364107  364113  364117  364119  364123  364129  364131  364137  364141  364143  364147  364149  364153  364155  364157  364158  364159  364161  364162  364163  364165  364167  364171  364173  364177  364179  364183  364189  364191  364197  364201  364203  364207  364213  364219  364221  364227  364231  364233  364239  364243  364249  364257  366461 

科目: 来源: 题型:

【题目】10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】在图的方格纸中,OAB的顶点坐标分别为O00)、A-2-1)、B-1-3),O1A1B1OAB是关于点P为位似中心的位似图形.

(1)在图中标出位似中心P的位置,并写出点P的坐标;

(2)以原点O为位似中心,在位似中心的同侧画出OAB的一个位似OA2B2,使它与OAB的相似比为21.并写出点B的对应点B2的坐标;

(3)判断OA2B2能否看作是由O1A1B1经过某种变换后得到的图形,若是,请指出是怎样变换得到的(直接写答案).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求证:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】矩形ABCDCEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线y=ax2+bx+ca0)的对称轴为直线x=1,与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则下列结论:①4acb20;②2ab=0;③a+b+c0;④点Mx1y1)、Nx2y2)在抛物线上,若x1x2<﹣1,则y1y2,⑤abc0.其中正确结论的个数是(  )

A.5B.4C.3D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线y=x2+bx+cx轴交于点A(﹣20

1)填空:c=   ;(用含b的式子表示)

2b4

①求证:抛物线与x轴有两个交点;

②设抛物线与x轴的另一个交点为B,当线段AB上恰有5个整点(横坐标、纵坐标都是整数的点),求b的取值范围;

3)平移抛物线,使其顶点P落在直线y=3x2上,设抛物线与直线的另一个交点为QC在该直线下方的抛物线上,求△CPQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;

(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;

(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市销售一种成本为40千克的商品,若按50千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,mx的一次函数,部分数据如下表:

观察表中数据,直接写出mx的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;

当售价定多少元时,会获得月销售最大利润,求出最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,矩形ABCDAB=6cmAD=8cm,点O从点B出发1cm/s的速度向点C运动,设O点运动时间为t(单位:s)(0<t<4),以点O为圆心,OB为半径作半圆⊙OBC 于点M,过点A作⊙O的切线交BC于点N,切点为P.

1)如图2,当点N与点C重合时,求t

2)如图3,连接AO,作OQAOAN于点Q,连接QM,求证:QM是⊙O的切线;

3)如图4,连接CP在点O整个运动过程中,求CP的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某汽车租赁公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.

1)当租金提高多少元时,公司的每日收益可达到10120元?

2)公司领导希望日收益达到10200元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由.

3)汽车日常维护要一定费用,已知外租车辆每日维护费为100元,未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益一维护费).

查看答案和解析>>

同步练习册答案