科目: 来源: 题型:
【题目】如图,在矩形中,,,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果分别从同时出发,当点运动到点时,两点停止运动,设运动时间为秒.
(1)填空:__________,_________;(用含的代数式表示)
(2)当为何值时,的长度等于?
(3)当为何值时,五边形的面积有最小值?最小值为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】赣州蓉江新区某汽车销售公司去年12月份销售新上市一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,今年2月月份该公司销售该型汽车达到450辆,并且去年12月到今年1月和今年1月到2月两次的增长率相同.
(1)求该公司销售该型汽车每次的增长率;
(2)若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD是正方形,E,F分别在线段BC和CD上,.连接EF。将△ADF绕着点顺时针旋转90°,得到
(1)证明:
(2)证明:EF=BE+DF.
(3)已知正方形ABCD边长是6,EF=5,求线段BE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】作图题:在图(1)(2)所示抛物线中,抛物线与轴交于、,与轴交于,点是抛物线的顶点,过平行于轴的直线是它的对称轴,点在对称轴上运动。仅用无刻度的直尺画线的方法,按要求完成下列作图:
(1)在图①中作出点,使线段最小;
(2)在图②中作出点,使线段最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC与△ADE都是等腰直角三角形,连接CD、BE,CD、BE相交于点O,△BAE可看作是由△CAD顺时针旋转所得.
(1)旋转中心是 ,旋转角度是 ;
(2)判断CD与BE的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线顶点为A(1,2),且过原点,与x轴的另一个交点为B,
(1)求抛物线的解析式和B点坐标;
(2)抛物线上是否存在点M,使△OBM的面积等于2?若存在,请写出M点坐标,若不存在,说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】两块不同的三角板按如图所示摆放,两个直角顶点C重合,,。接着保持三角板ACD不动,将三角板CBE绕着点C旋转,但保证点E在直线AC的上方,若三角板CBE有一条边与斜边AD平行,则∠ACE=__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.②③④D.①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线经过,两点,与轴交于点.
(1)求抛物线的解析式;
(2)若点在第一象限的抛物线上,且点的横坐标为,设的面积为,求与的函数关系式,并求的最大值;
(3)在轴上是否存在点,使以点,,为顶点的三角形为等腰三角形?如果存在,直接写出点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com