科目: 来源: 题型:
【题目】四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.
(1)如图1,∠ADB=60°.求证:AC=CD+CB.
(2)如图2,∠ADB=90°.
①求证:AC=CD+CB.
②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b-15)x+c+18的图象与x轴的交点分别是A,B,C.
(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.
(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.
(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为-2,求这两个函数的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连结BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度数;
(2)若弦BC=6 cm,求图中劣弧BC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:
(1)搅匀后从中任意摸出1个球,恰好是白球.
(2)搅匀后从中任意摸出2个球,2个都是白球.
(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0(a≠0)的实数解;
(2)若方程ax2+bx+c=k有两个不相等的实数根,写出 k的取值范围;
(3)当0<x<3 时,写出函数值y的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线的顶点为(m,n)抛物线的顶点为(m,n),如果 ,那么我们称抛物线与关于点 中心对称,给出抛物线①;②
(1)判断抛物线①与抛物线②是否中心对称?若是,求出对称中心的坐标;若不是,说明理由;
(2)直线y=m交抛物线①于A. B两点,交抛物线②于C. D两点,如果AB=2CD,求m的值;
(3)设抛物线①与抛物线②的顶点分别为M、N,点P在x轴上移动,若△MNP为直角三角形,求点P坐标。
查看答案和解析>>
科目: 来源: 题型:
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
查看答案和解析>>
科目: 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com