科目: 来源: 题型:
【题目】在平面直角坐标系中,抛物线顶点为,且该抛物线与轴交于,两点(点在点的左侧).我们规定:抛物线与轴围成的封闭区域称为“区域”(不包含边界);横、纵坐标都是整数的点称为整点.
(1)求抛物线顶点的坐标(用含的代数式表示);
(2)如果抛物线经过.
①求的值;
②在①的条件下,直接写出“区域”内整点的个数.
(3)如果抛物线在“区域”内有4个整点,直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF.已知AB = 4cm,AD = 2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为格点三角形,图中的就是格点三角形.在建立平面直角坐标系后,点的坐标为.
(1)把向左平移8格后得到,在坐标系方格纸中画出的图形并直接写出点的坐标为____;
(2)把绕点按顺时针方向旋转后得到,在坐标系方格纸中画出的图形并直接写出点的坐标为____________;
(3)在现有坐标系的方格纸中把以点为位似中心放大,使放大前后对应边长的比为,画出.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用,名为“数据包络分析”(简称DEA)的一种效率评价方法,可以很好地优化出租车资源配置,为了解出租车资源的“供需匹配”,北京、上海等城市对每天24个时段的DEA值进行调查,调查发现,DEA值越大,说明匹配度越好.在某一段时间内,北京的DEA值y与时刻t的关系近似满足函数关系(a,b,c是常数,且≠0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
⑴求抛物线的解析式及顶点D的坐标;
⑵判断△ABC的形状,证明你的结论;
⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.
(1)饲养场的长为多少米(用含a的代数式表示).
(2)若饲养场的面积为288m2,求a的值.
(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形 ABCD 是边长为 2,一个锐角等于 60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点 D 重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交 CB,BA(或它们的延长线)于点 E, F;
①当 CE=AF 时,如图①,DE 与 DF 的数量关系是 ;
②继续旋转三角形纸片,当 CE≠AF 时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由;
③再次旋转三角形纸片,当点 E,F 分别在 CB,BA 的延长线上时,如图③, 请直接写出 DE 与 DF 的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧)
(1)当a=﹣1时,求A,B两点的坐标;
(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.当a=2时,求PB+PC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com