相关习题
 0  364206  364214  364220  364224  364230  364232  364236  364242  364244  364250  364256  364260  364262  364266  364272  364274  364280  364284  364286  364290  364292  364296  364298  364300  364301  364302  364304  364305  364306  364308  364310  364314  364316  364320  364322  364326  364332  364334  364340  364344  364346  364350  364356  364362  364364  364370  364374  364376  364382  364386  364392  364400  366461 

科目: 来源: 题型:

【题目】已知二次函数yax2+bx3a≠0,且ab为常数)的图象经过点(21)和(30).

(1)试求这条抛物线的解析式;

(2)若将抛物线进行上、下或左、右平移,请你写出一种平移的方法,使平移后的抛物线顶点落在直线yx上,并直接写出平移后抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD中,ADBC,∠BCD90°ABBC+AD,∠DAC45°ECD上一点,且∠BAE45°,若CD4,则DE长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y1kx+mk≠0)和二次函数y2ax2+bx+ca≠0)的自变最x和对应函数值y1y2的部分对应值如表:

x

1

0

2

4

y1

0

1

3

5

x

1

1

3

4

y2

0

4

0

5

y1y2时,自变量x的取值范图是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1

(1)画出△A1OB1

(2)求在旋转过程中线段AB、BO扫过的图形的面积之和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△ABE′,点BE的对应点分别为B′、E′.

(1)如图1,当α=30°时,求证:BC=DE

(2)连接BEDE′,当BE=DE′时,请用图2求α的值;

(3)如图3,点PAB的中点,点Q为线段BE′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCDDEFG都是正方形,边长分别为mnmn).坐标原点OAD的中点,ADEy轴上,若二次函数yax2的图象过CF两点,则=(  )

A.+1B.+1C.21D.21

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知⊙O是以数轴的原点O为圆心,以3为半径的圆,∠AOB45°,点P在数轴上运动.若过点POA平行的直线与⊙O有公共点,设点P在数轴上表示的数为x.则x的取值范围是(  )

A.0≤x≤3B.x3C.3≤x≤3D.3x≤3

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线yy=﹣2018x2+2019y2018x2共有的性质是(  )

A.开口向上

B.对称轴是y

C.x0时,yx的增大而增大

D.都有最低点

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在等腰中,,动点从点出发以的速度沿匀速运动,动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动,设运动时间为.过点于点,以为边作平行四边形.

1)当为何值时,为直角三角形;

2)设四边形的面积为,求的函数关系式;

3)在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由;

4)是否存在某一时刻,使点的平分线上?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(问题提出)如果从个连续的自然数中选择个连续的自然数,有多少种不同的选择方法?

(问题探究)为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论.

探究一:如果从个连续的自然数中选择个连续的自然数,会有多少种不同的选择方法?

时,显然有种不同的选择方法;

时,有种不同的选择方法;

时,有________种不同的选择方法;

……

由上可知:从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法.

探究二:如果从个连续的自然数中选择个,……个连续的自然数,分别有多少种不同的选择方法?

我们借助下面的框图继续探究,发现规律并应用规律完成填空.

...

个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;

个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;

……

个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;

……

由上可知:如果从个连续的自然数中选择个连续的自然数,有______种不同的选择方法.

(问题解决)如果从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法.

(实际应用)我们运用上面探究得到的结论,可以解决生活中的一些实际问题.

1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有______种不同的选择.

2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排号到号的电影票让他们选择,如果他们想拿三张连号票,则一共有______种不同的选择方法.

(拓展延伸)如图,将一个的图案放置在的方格纸中,使它恰好盖住其中的四个小正方形,共有______种不同的放置方法.

查看答案和解析>>

同步练习册答案