科目: 来源: 题型:
【题目】如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF的值为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).
∴△MDI∽△ANI.
∴,
∴IAID=IMIN,①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.
∵DE是⊙O的直径,所以∠DBE=90°.
∵⊙I与AB相切于点F,所以∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对的圆周角相等),
∴△AIF∽△EDB,
∴.
∴IABD=DEIF②
任务:(1)观察发现:IM=R+d,IN= (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm,点O为AB中点,点I是△ABC的内心,则OI= cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AD=4cm,AB=8cm,点P从点A出发沿边上向点匀速运动,同时点从点出发沿边上向点匀速运动,速度都是,运动时间是,交于点,点关于的对称点是,射线分别与,交于点,.
(1)= °;QF= ,= .(用含的代数式表示)
(2)当点与点重合时, 如图②,求的值.
(3)探究:在点,运动过程中,
①的值是否是定值?若是,请求出这个值;若不是,请说明理由.
②为何值时,以点,,为顶点的三角形与相似?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O的直径PD=8,点E是⊙O上一点,点A是的中点,连接PA,过点A作直线l⊥PE,垂足为点B,PB=6,直径PD的延长线交直线l于点F.
(1)求证:直线l是⊙O的切线;
(2)求线段PA的长;
(3)求阴影部分的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1).
(1)以点O为位似中心,在y轴左侧将△OBC放大2倍,画出对应的△;
(2)若△OBC内部一点M的坐标为(a,b),则点M对应点M′的坐标是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
(1)填空:a= ;b= ;c= ;
(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)
(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,点E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,连接AF、DF,则的最小值是__.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年7月20日猪肉价格比今年年初上涨了60%,某市民今年7月20日在某超市购买1千克猪肉花了80元钱.
(1)问:今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克65元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向1的概率为 ;
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com