科目: 来源: 题型:
【题目】某一房间内A、B两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB之间经过时,将触发报警.现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(4,4),小车沿抛物线y=ax2﹣2ax﹣3a(a<0)运动.若小车在运动过程中只触发一次报警装置,则a的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC为等腰直角三角形,∠B=90°,AB=2,把△ABC绕点A逆时针旋转60°得到△AB1C1,连接CB1,则点B1到直线AC的距离为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点A在第一象限,点C的坐标为(1,0),△AOC是等边三角形,现把△AOC按如下规律进行旋转:第1次旋转,把△AOC绕点C按顺时针方向旋转120°后得到△A1O1C,点A1、O1分别是点A、O的对应点,第2次旋转,把△A1O1C绕着点A1按顺时针方向旋转120°后得到△A1O2C1,点O2、C1分别是点O1、C的对应点,第3次旋转,把△A1O2C1绕着点O2按顺时针方向旋转120°后得到△A2O2C2,点A2、C2分别是点A1、C1的对应点,……,依此规律,第6次旋转,把△A3O4C3绕着点O4按顺时针方向旋转120°后得到△A4O4C4,点A4、C4分别是点A3、C3的对应点,则点A4的坐标是( )
A.(,)B.(6,0)C.(,)D.(7,0)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=1,现给出下列4个结论:①abc>0,②2a﹣b=0,③4a+2b+c>0,④b2﹣4ac>0,其中错误的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是( )
A.8B.4+4C.8+D.8
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图像与轴交于两点,与轴交于点,其顶点为,连接,过点作轴的垂线.
(1)求点的坐标;
(2)直线上是否存在点,使的面积等于的面积的3倍?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种商品每天的销售利润(元)与销售单价(元)之间满足关系:,其图像如图所示.
(1)销售单价为多少元时,这种商品每天的销售利润最大?最大利润为多少元?
(2)若该商品每天的销售利润不低于12元,则销售单价的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】将一条长为的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。
(1)要使这两个正方形的面积之和等于,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于吗?若能,求出两段铁丝的长度;若不能,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com