科目: 来源: 题型:
【题目】如图,△ABC的各个顶点都在边长为1的正方形网格的交点上.
(1)把△ABC绕原点O顺时针旋转90°,作出旋转后的△A1B1C1;
(2)若△A2B2C2与△ABC关于原点O对称,则△A2B2C2的各顶点坐标为:A2 ;B2 ;C2 .
查看答案和解析>>
科目: 来源: 题型:
【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图1,矩形OABC的两个顶点A,C分别在x轴,y轴上,点B的坐标是(8,2),点P是边BC上的一个动点,连接AP,以AP为一边朝点B方向作正方形PADE,连接OP并延长与DE交于点M,设CP=a(a>0).
(1)请用含a的代数式表示点P,E的坐标.
(2)连接OE,并把OE绕点E逆时针方向旋转90°得EF.如图2,若点F恰好落在x轴的正半轴上,求a与的值.
(3)①如图1,当点M为DE的中点时,求a的值.
②在①的前提下,并且当a>4时,OP的延长线上存在点Q,使得EQ+PQ有最小值,请直接写出EQ+PQ的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF是△ABC的子三角形,如图.
(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.
求证:△DEF是△ABC的子三角形.
(2)已知:如图2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CF和AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点.
(1)求抛物线y=﹣x2+bx+c的解析式.
(2)在第二象限内取一点C,作CD⊥x轴于点D,连接AC,且AD=1,CD=5,将Rt△ACD沿x轴向右平移m个单位.
①当点C第一次落在抛物线上时,求m的值.
②当△ACD与抛物线y=﹣x2+bx+c的图象有交点时,求m的取值范围(直接答案即可)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.销售价为每千克60元时,一天能销售80千克,经市场调查,该商品每涨价1元,一天销售量就减少2千克,设该商品的售价涨了x元,每天销售该商品的总利润为y元.
(1)求y与x之间的函数表达式;
(2)当x为多少时每天总利润y最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】从共享单车、共享汽车等共享出行到共享充电宝、共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者,小宇上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好.
(1)从中随机抽取一张,求刚好抽到“共享服务”的概率.
(2)从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com