相关习题
 0  364425  364433  364439  364443  364449  364451  364455  364461  364463  364469  364475  364479  364481  364485  364491  364493  364499  364503  364505  364509  364511  364515  364517  364519  364520  364521  364523  364524  364525  364527  364529  364533  364535  364539  364541  364545  364551  364553  364559  364563  364565  364569  364575  364581  364583  364589  364593  364595  364601  364605  364611  364619  366461 

科目: 来源: 题型:

【题目】在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.

(1)根据题意,袋中有 个蓝球.

(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).

查看答案和解析>>

科目: 来源: 题型:

【题目】有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 2是支撑杆的平面示意图,ABCD分别是两根不同长度的支撑杆,夹角∠BOD=. AO=85cmBO=DO=65cm. : ,较长支撑杆的端点离地面的高度约为_____.(参考数据:.)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCDPBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为( )

A. B. C. 4D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】在同一平面直角坐标系中,函数yax2+bxy=﹣bx+a的图象可能是(  )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A(-10)B(30)两点。

1)求bc的值;

2P为抛物线上的点,且满足SPAB=8,求P点的坐标

3)设抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】四边形ABCD是正方形,EF分别是DCCB的延长线上的点,且DE=BF,连接AEAFEF

1)求证:△ADE≌△ABF

2△ABF可以由△ADE绕旋转中心________点,按顺时针方向旋转________度得到;

3)若BC=8DE=3,求△AEF的面积

查看答案和解析>>

科目: 来源: 题型:

【题目】某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

1)若设每件降价x元、每星期售出商品的利润为y元,请写yx函数关系式,并求出自变量x的取值范围

2)当降价多少元时,每星期的利润最大?最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,已知∠C=90°∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m0m180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m为( )

A70° B70°120°

C120° D80°

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-10) 对称轴为直线x=2,下列结论:抛物线与x轴的另一个交点是(50) ②4a-2b+c>0③4a+b=0x>-1时,y的值随x值的增大而增大。其中正确的结论有(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

同步练习册答案