科目: 来源: 题型:
【题目】P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?( )
A. 1条B. 2条C. 3条D. 4条
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A、P两点.
(1)求抛物线的函数关系式.
(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BC=AB,求点B坐标;
(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,水平地面上有一幢高为AD的楼,楼前有坡角为30°、长为6米的斜坡.已知从A点观测B、C的俯角分别为60°和30°
(1)求楼高;
(2)现在要将一个半径为2米的⊙O从坡底与斜坡相切时的⊙O1位置牵引滚动到斜坡上至圆刚好与斜坡上水平面相切时的⊙O2位置,求滚动过程中圆心O移动的总长度.(参考数据:tan15°=2﹣)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E,延长CA交⊙O于点F.
(1)求证:DE是⊙O切线;
(2)若AB=10cm,DE+EA=6cm,求AF的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场试销一种成本为60元/件的夏季服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的50%,经市场试销调研发现,日销售量y(件)与售价x(元/件)符合一次函数y=kx+b,且当售价80元/件时,日销量为70件,当售价为70元件时,日销量为80件
(1)求一次函数y=kx+b的表达式;
(2)若该商场每天获得利润为w元,试写出利润w与售价x之间的关系式,并求出售价定为多少元时,商场每天可获得最大利润,最大利润是多少元?(利润=销售收入﹣进货成本,不含其他支出)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小军(AB)、小丽(CD)和小红(EF)同时站在路灯下的笔直路线上,其中小丽和小红的影子分别是BD和FM.
(1)请你在图中画出路灯灯泡所在的位置(用点P表示),并画出小军AB此时在路灯下的影子(用线段BN表示).
(2)若小丽和小红身高都是1.7米,小军身高1.8米,BD=2米,DF=3米,FM=1米,求路灯高度和小军影长,
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠B=60,∠ACB=75,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于E、F,若弦EF的最小值为1,则AB的长为
A. | B. | C.1.5 | D. |
查看答案和解析>>
科目: 来源: 题型:
【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
(发现)
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
(应用)
二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com