科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与x轴交于,点两点,与y轴交于点C
求抛物线的解析式:
若点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接PA、PC、AC.
求的面积S关于t的函数关系式.
求的面积的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,MN=2,设AM=x,在下列关于△PMN是等腰三角形和对应P点个数的说法中,
①当x=0(即M、A两点重合)时,P点有6个;
②当P点有8个时,x=2﹣2;
③当△PMN是等边三角形时,P点有4个;
④当0<x<4﹣2时,P点最多有9个.
其中结论正确的是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列材料,回答问题.
材料:求圆外一定点到圆上距离最小值是安徽省中考数学较为常见的一种题型,此类题型试题有时出题者将圆隐藏,故又称为“隐圆问题”.解决这类问题,关键是要找到动点的运动轨迹,即该动点是绕哪一个定点旋转,且能保持旋转半径不变.从而找到动点所在的隐藏圆,进面转换成圆外一点到圆心的距离减半径,求得最小值.
解决问题:
(1)如图①,圆O的半径为1,圆外一点A到圆心的距离为3,圆上一动点B,当A、O、B满足条件____________时,有最小值为____________.
(2)如图②,等腰两腰长为5,底边长为6,以A为圆心,2为半径作圆,圆上动点P到的距离最小值为__________.
(3)如图③,,P、Q分别是射线、上两个动点,C是线段的中点,且,则在线段滑动的过程中,求点C运动形成的路径长,并说明理由.
(4)如图④,在矩形中,,,点E是中点,点F是上一点,把沿着翻折,点B落在点处,求的最小值,并说明理由.
(5)如图⑤,在中,,,,以边中点O为圆心,作半圆与相切,点P,Q分别是边和半圆上的动点,连接,求长的最小值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点及点B.
(1)求B点坐标与二次函数的解析式;
(2)根据图象,写出满足的x的取值范围.
(3)求线段的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其兹有停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:
(1)指针指向红色;
(2)指针指向黄色或绿色。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P是内切圆的圆心,将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合。第一次滚动后,圆心为,第二次滚动后圆心为…依次规律,第2019次滚动后,内切圆的圆心的坐标是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy 中,点P是⊙C外一点,连接CP交⊙C于点Q,点P关于点Q的对称点为P′,当点P′在线段CQ上时,称点P为⊙C“友好点”.已知A(1,0),B(0,2),C(3,3)
(1)当⊙O的半径为1时,
①点A,B,C中是⊙O“友好点”的是 ;
②已知点M在直线y=﹣x+2 上,且点M是⊙O“友好点”,求点M的横坐标m的取值范围;
(2)已知点D,连接BC,BD,CD,⊙T的圆心为T(t,﹣1),半径为1,若在△BCD上存在一点N,使点N是⊙T“友好点”,求圆心T的横坐标t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.
(1)求证:BD=CE;
(2)延长ED交BC于点F,求证:F为BC的中点;
(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com