科目: 来源: 题型:
【题目】如图,已知在矩形 中,,,点 从点 出发,沿 方向以每秒 个单位的速度向点 运动,点 从点 出发,沿射线 以每秒 个单位的速度运动,当点 运动到点 时,, 两点停止运动.连接 ,过点 作 ,垂足为 ,连接 ,交 于点 ,交 于点 ,连接 .给出下列结论:
① ;
② ;
③ ;
④ 的值为定值 .
上述结论中正确的个数为 ( ) 个.
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y1=2x2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论错误的是( )
A. 当x>0时,y1随x的增大而增大,y2随x的增大而减小;
B. k=4
C. 当0<x<2时,y1<y2
D. 当x=4时,EF=4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=x2+bx+c.
(Ⅰ)若二次函数的图象经过(3,﹣2),且对称轴为x=1,求二次函数的解析式;
(Ⅱ)如图,在(Ⅰ)的条件下,过定点的直线y=﹣kx+k﹣4(k≤0)与(1)中的抛物线交于点M,N,且抛物线的顶点为P,若△PMN的面积等于3,求k的值;
(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在等边△ABC中,以BC为弦的⊙O分别与AB,AC交于点D和E,点F是BC延长线上一点,CF=AE,连接EF.
(1)如图1,BC为直径,求证:EF是⊙O的切线;
(2)如图2,EF与⊙O交于点G,⊙O的半径为1,BC的长为π,求BF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分钟) | 18 | 20 | 22 | 25 | 28 |
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=x2-11x+78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,A(t,0),B(t+2,0).对于线段AB和点P给出如下定义:当∠APB=90°时,称点P为线段AB的“直角点”.
(Ⅰ)当t=﹣1时,点C(0,1),判断点C是否为线段AB的“直角点”,并说明理由;
(Ⅱ)已知抛物线y=ax2+bx(a>0,b<0)的顶点为M,与x轴交于A(t,0),B(t+2,0),若点M为线段AB的“直角点”,求出此抛物线的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠BAC=120°,以BC为边向外作等边△BCD.
(Ⅰ)∠ABD+∠ACD=_____.
(Ⅱ)∠BAD=_____.
(Ⅲ)若AB=3,AC=2,求AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求m的值及这个二次函数的解析式;
(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.
(1)求证:AB=CB;
(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com