科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.
(1)求A,C两点的坐标.
(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.
(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12米,BC=24米,动点P从点A开始沿边AB向B以2米/秒的速度运动(不与点B重合),动点Q从点B开始沿BC向C以4米/秒的速度运动(不与点C重合).如果P、Q分别从A、B同时出发,设运动时间为x秒,四边形APQC的面积为y平方米.
(1)求y与x之间的函数关系式,直接写出自变量x的取值范围;
(2)求当x为多少时,y有最小值,最小值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,网格中已知△ABC三个顶点的坐标分别为(-4,3)、(-3,1)、(-1,3),按要求解决下列问题:
(1)将△ABC向右平移1个单位长度,再向下平移4个单位长度,得到,作出;
(2)将绕点O逆时针旋转90°,得到作出
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为6;③∠AOB=150°;④S△BOC=12+6; ⑤S四边形AOBO′=24+12.其中正确的结论是_____.(填序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k=0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0)和B(m,0),且3<m<4,则下列说法:①b<0;②a+c=b;③b2>4ac;④2b>3c;⑤=1,正确的是( )
A.①②④B.①③⑤C.②③④D.②③⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
售价(元/台) | 月销售量(台) |
400 | 200 |
250 | |
x |
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .
(2)探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.
(3)拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com