科目: 来源: 题型:
【题目】如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.
小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.
下面是小颖的探究过程,请补充完整:
(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:
位置 | 位置 | 位置 | 位置 | 位置 | 位置 | 位置 | |
在、和的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数.
(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:
(3)结合函数图像,解决问题:
当为等腰三角形时,的长约为
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图所示,点到、、三点的距离均等于(为常数),到点的距离等于的所有点组成图形. 射线与射线关于对称,过点 C作于.
(1)依题意补全图形(保留作图痕迹);
(2)判断直线与图形的公共点个数并加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.
(1)求的值;
(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如下表所示:
... | ... | ||||||
... | ... |
(1)求这个二次函数的表达式;
(2)在给定的平面直角坐标系中画出这个二次函数的图象;
(3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD是正方形,对角线AC,BD相交于点O.
(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.
①依题意补全图1;
②判断AP与BN的数量关系及位置关系,写出结论并加以证明;
(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)
查看答案和解析>>
科目: 来源: 题型:
【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
(发现)
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
(应用)
二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA
与⊙O的另一个交点为E,连结AC,CE。
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com