科目: 来源: 题型:
【题目】已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.
(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.
(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=x2﹣2mx+m2﹣2与y轴交于点C.
(1)抛物线的顶点坐称为 ,点C坐标为 ;(用含m的代数式表示)
(2)当m=1时,抛物线上有一动点P,设P点横坐标为n,且n>0.
①若点P到x轴的距离为2时,求点P的坐标;
②设抛物线在点C与点P之间部分(含点C和点P)最高点与最低点纵坐标之差为h,求h与n之间的函数关系式,并写出自变量n的取值范围;
(3)若点A(﹣3,2)、B(2,2),连结AB,当抛物线y=x2﹣2mx+m2﹣2与线段AB只有一个交点时,直接写出m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=3动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB或BC于点E,交AD或DC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.
(1)①AC= .②当点F在AD上时,用含t的代数式直接表示线段PF的长 .
(2)当点F与点D重合时,求t的值.
(3)设方形EFGH的周长为l,求l与t之间的函数关系式.
(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】教材呈现:下图是华师版九年级上册数学教材第77页的部分内容.
猜想
如图,在△ABC中,点D、E分别是AB与AC的中点,根据画出的图形,可以猜想:
DE∥BC,且DE=BC.
对此,我们可以用演绎推理给出证明
证明在△ABC中,
∵点D、E分别是AB与AC的中点,
∴请根据教材提示,结合图①,写出完整证明过程,
结论应用:
如图②在四边形ABCD中,AD=BC,点P是对角线BD的中点,M是DC中点,N是AB中点,MN与BD相交于点Q.
(1)求证:∠PMN=∠PNM;
(2)若AD=BC=4,∠ADB=90°,∠DBC=30°,则PQ= .
查看答案和解析>>
科目: 来源: 题型:
【题目】学校与图书馆在同一条笔直道路上。甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地。两人之间的距离(米)与时间(分钟)之间的函数关系如图所示。
(1)当____________分钟时甲、乙两人相遇,乙的速度为__________米/分钟,点的坐标为_____________;
(2)求出甲、乙两人相遇后与之间的函数关系式;
(3)当乙到达距学校800米处时,求甲、乙两人之间的距离。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数(x>0)的图像经过点D,则值为( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知线段与点,若在线段上存在点,满足,则称点为线段的“限距点”.
(1)如图,在平面直角坐标系中,若点.
①在中,是线段的“限距点”的是 ;
②点是直线上一点,若点是线段的“限距点”,请求出点横坐标的取值范围.
(2)在平面直角坐标系中,点,直线与轴交于点,与轴交于点. 上存在线段的“限距点”,请求出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在中,,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接、.
(1)在图中,补全图形,并证明 .
(2)连接,若与⊙相切,则的度数为 .
(3)连接,则的最小值为 ;的最大值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com