科目: 来源: 题型:
【题目】某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.
(1)小亮将妈妈分类好的三类垃圾随机投入到三种垃圾箱内,请用画树状图或表格的方法表示所有可能性,并请求出小亮投放正确的概率.
(2)请你就小亮投放垃圾的事件提出两条合理化建议.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.
(1)求甲、乙两种品牌空调的进货价;
(2)该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】观察下列各式及其验证过程:,验证:,验证:.
(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证;
(2)针对上述各式反映的规律,直接写出用a(a≥2的整数)表示的等式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.
(1)从中任取一球,求该球上标记的数字为正数的概率;
(2)从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.
(1)孔明同学调查的这组学生共有_______人;
(2)这组数据的众数是_____元,中位数是_____元;
(3)若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点A(1,0),已知抛物线y=﹣x2+mx﹣2m(m是常数),顶点为P.
(1)当抛物线经过点A时,求顶点P坐标;
(2)等腰Rt△AOB,点B在第四象限,且OA=OB.当抛物线与线段OB有且仅有两个公共点时,求m满足的条件;
(3)无论m取何值,该抛物线都经过定点H.当∠AHP=45°,求此抛物线解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com