科目: 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O不重合),作AF⊥BE,垂足为G,交BC于F,交B0于H,连接OG,CC.
(1)求证:AH=BE;
(2)试探究:∠AGO的度数是否为定值?请说明理由;
(3)若OG⊥CG,BG=,求△OGC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,O是菱形ABCD对角线AC与BD的交点,CD=4cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求证:四边形OBEC为矩形;
(2)求四边形ABEC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=x+6与x轴、y轴分别交于A,B两点,将直线l1沿着y轴正方向平移一段距离得到直线l2交y轴于点M,且l1与l2之间的距离为3,点C(x,y)是直线11上的一个动点,过点C作AB的垂线CD交y轴于点D.
(1)求直线l2的解析式;
(2)当C运动到什么位置时,△AOD的面积为21,求出此时点C的坐标;
(3)连接AM,将△ABM绕着点M旋转得到△A'B'M',在平面内是否存在一点N.使四边形AMA'N为矩形?若存在,求出点N的坐标:若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在△ABC中,AC=nAB,∠CAB=α,点E,F分别在AB,AC上且EF∥BC,把△AEF绕点A顺时针旋转到如图2的位置.连接CF,BE.
(1)求证:∠ACF=∠ABE;
(2)若点M,N分别是EF,BC的中点,当α=90°时,求证:BE2+CF2=4MN2;
(3)如图3,点M,N分别在EF,BC上且==,若n=,α=135°,BE=,直接写出MN的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为 ;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.
(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;
(2)当AP=4时,求sin∠EBP的值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com