科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,连接AD,点E在BC上,∠CDE=45°,DE交AB于点F,CD=6.
(1)求∠OAD的度数;
(2)求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A、B,直线x=k与直线y=﹣k交于点C,
(1)求直线l与y轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段AB、BC、CA围成的区域(不含边界)为W.
①当k=1时,区域内的整点有 个,其坐标为 .
②当k=2时,区域W内的整点有 个.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )
A.点MB.点NC.点PD.点Q
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数的图象经过P(2,2),顶点为O(0,0),将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为( )
A.y=x2B.y=(x﹣2)2C.y=(x﹣4)2D.y=(x﹣2)2+2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与轴相交于两点,点在点的右侧,与轴相交于点.
求点的坐标;
在抛物线的对称轴上有一点,使的值最小,求点的坐标;
点为轴上一动点,在抛物线上是否存在一点,使以四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究:
操作发现:如图1,在中,,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接.则与的位置关系为平行;
探究证明:如图2,当是锐角三角形,时,将按照(1)中的方式,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接,
①探究与的位置关系,写出你的探究结论,并加以证明;
②探究与的位置关系,写出你的探究结论,并加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com