相关习题
 0  365083  365091  365097  365101  365107  365109  365113  365119  365121  365127  365133  365137  365139  365143  365149  365151  365157  365161  365163  365167  365169  365173  365175  365177  365178  365179  365181  365182  365183  365185  365187  365191  365193  365197  365199  365203  365209  365211  365217  365221  365223  365227  365233  365239  365241  365247  365251  365253  365259  365263  365269  365277  366461 

科目: 来源: 题型:

【题目】已知如图,,它们依次交直线ab于点ABC和点DEF.

1)如果,求DE的长.

2)如果,求BE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图所示的两条抛物线的解析式分别是y1=-ax2ax1y2ax2ax1(其中a为常数,且a0)

1)请写出三条与上述抛物线有关的不同类型的结论;

2)当a时,设y1=-ax2ax1x轴分别交于MN两点(MN的左边)y2ax2ax1x轴分别交于EF两点(EF的左边),观察MNEF四点坐标,请写出一个你所得到的正确结论,并说明理由;

3)设上述两条抛物线相交于AB两点,直线ll1l2都垂直于x轴,l1l2分别经过AB两点,l在直线l1l2之间,且l与两条抛物线分别交于CD两点,求线段CD的最大值?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知AB是⊙O的弦,点P是优弧AB上的一个动点,连接AP,过点A作AP的垂线,交PB的延长线于点C.

(1)如图1,AC与⊙O相交于点D,过点D作⊙O的切线,交PC于点E,若DE∥AB,求证:PA=PB;

(2)如图2,已知⊙O的半径为2,AB=2

①当点P在优弧AB上运动时,∠C的度数为   °;

②当点P在优弧AB上运动时,△ABP的面积随之变化,求△ABP面积的最大值;

③当点P在优弧AB上运动时,△ABC的面积随之变化,△ABC的面积的最大值为   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCO的对角线BO在x轴上,若正方形ABCO的边长为4,点B在x负半轴上,反比例函数的图象经过C点.

(1)求该反比例函数的解析式;

(2)若点P是反比例函数上的一点,且PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的益智玩具由一块主板AB和一个支撑架CD组成,其侧面示意图如图1所示,测得AB⊥BDAB=40cmCD=25cm,点CAB的中点.现为了方便儿童操作,需调整玩具的摆放,将AB绕点B顺时针旋转,CD绕点C旋转,同时点D做水平滑动(如图2),当点C1BD的距离为10cm时停止运动,求点A经过的路径的长和点D滑动的距离.(结果保留整数,参考数据:≈1732 ≈4583π≈3142)

查看答案和解析>>

科目: 来源: 题型:

【题目】菲尔兹奖是国际上享有崇高声誉的一个数学奖项,每4年评选一次,颁给有卓越贡献的年轻数学家,被视为数学界的诺贝尔奖.下面的数据是从1936年至201445岁以下菲尔兹奖得住获奖时的年龄(岁):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37 34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38 34 33 40 36 36 37 31 38 38 37 35 40 39 37

请根据以上数据,解答以下问题:

1)小彬按组距为5”列出了如下的频数分布表,每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图:

2)在(1)的基础上,小彬又画出了如图所示的扇形统计图,图中B组所对的圆心角的度数为   

3)根据(1)中的频数分布直方图试描述这50位菲尔兹奖得主获奖时的年龄的分布特征.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.

(1)在图中作出P关于y轴对称的P′.根据作图直接写出P′与直线MN的位置关系.

(2)若点N在(1)中的P′上,求PN的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣13.乙袋中的三张卡片所标的数值为﹣216.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把xy分别作为点A的横坐标和纵坐标.

1)用适当的方法写出点Axy)的所有情况.

2)求点A落在第三象限的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.

(1)求证:△ABP∽△PCD;

(2)若AB=10,BC=12,当PD∥AB时,求BP的长.

查看答案和解析>>

同步练习册答案