科目: 来源: 题型:
【题目】某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.
(1)求证:∠D=∠F;
(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.
(1)求证:∠ABC=∠ABO;
(2)若AB=,AC=1,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.
(1)小明被分配到“迷你马拉松”项目组的概率为 ;
(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:
命中环数 | 6 | 7 | 8 | 9 | 10 |
甲命中相应环数的次数 | 0 | 1 | 3 | 1 | 0 |
乙命中相应环数的次数 | 2 | 0 | 0 | 2 | 1 |
(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
(2)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).
(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;
(2)△A′B′C′的面积为 个平方单位;
(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、Dn′标出)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是( )
A.2B.3C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.
(1)求该抛物线的解析式;
(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;
(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.
(1)求证:点D为BC的中点;
(2)求AP的长度;
(3)求证:CP是⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com