相关习题
 0  365226  365234  365240  365244  365250  365252  365256  365262  365264  365270  365276  365280  365282  365286  365292  365294  365300  365304  365306  365310  365312  365316  365318  365320  365321  365322  365324  365325  365326  365328  365330  365334  365336  365340  365342  365346  365352  365354  365360  365364  365366  365370  365376  365382  365384  365390  365394  365396  365402  365406  365412  365420  366461 

科目: 来源: 题型:

【题目】如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()

A. 四边形一定是平行四边形

B. ,则四边形是矩形

C. 若四边形是菱形,则是等边三角形

D. 若四边形是正方形,则是等腰直角三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB=90°OC=2OBtanABC=2,点B的坐标为(10).抛物线y=x2+bx+c经过AB两点.

1)求抛物线的解析式;

2)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PE最大.

①求点P的坐标和PE的最大值.

②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD

1)如图(2),若ABCD相交于圆外一点P, 上面的结论是否成立?请说明理由.

2)如图(3,PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PAPBPC之间的数量关系.

3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1,阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,

1)求点C到直线AB的距离;

2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.

(1)“从中任意抽取1个球不是红球就是白球   事件,从中任意抽取1个球是黑球   事件;

(2)从中任意抽取1个球恰好是红球的概率是   

(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于A(﹣21),B1n)两点.

根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx经过点A10)和点B50),与y轴交于点C

1)求此抛物线的解析式;

2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;

3)在直线BC上方的抛物线上任取一点P,连接PBPC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,的弦,为半径的中点,过交弦于点,交于点,且

1)求证:的切线;

2)连接,求的度数:

3)如果,求的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC内接于⊙O,过点A作直线EF

1)如图所示,若AB⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种): 或者

2)如图所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF⊙O的切线吗?试证明你的判断.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2 mA处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.

(1)h=2.6时,求yx的关系式(不要求写出自变量x的取值范围)

(2)h=2.6时,球能否越过球网?球会不会出界?请说明理由.

查看答案和解析>>

同步练习册答案